Machine Learning

week 2, 2024

The Problem of Perception

Some problems are hard to solve by programming

Example: computer vision

Radovic, Matija, Offei Adarkwa, and Qiaosong Wang. "Object recognition in aerial images using convolutional neural networks." *Journal of Imaging* 3.2 (2017): 21.

Difficult Functions

AlphaStar playing StarCraft II:

Input: recent history (t - 1, t - 2, ...)of 10000 input variables

Output: choose between 10^{26} possible actions

This extremely difficult function is computed by a neural network

Vinyals, Oriol, et al. "Grandmaster level in StarCraft II using multi-agent reinforcement learning." *Nature* 575.7782 (2019): 350-354.

Motivation

For problems that:

- are unreasonably difficult to compute
- or, we have no idea *how* to compute

Machine learning may provide an **approximate** solution

Usage Example

Problem: recognize handwritten digits automatically

You have some examples:

(Like the 60000 images in the MNIST dataset;

https://en.wikipedia.org/wiki/MNIST_database

Usage Example

Step 1: show the examples to the magic black box:

Usage Example

Step 2: the magic box will start answering **based on the examples**

Problem solved!

(Provided that it works reliably enough -

usually the data you needed this for should be similar to examples)

Making the magic box

There are many machine learning methods, we will study only a few in this course

Starting focus: neural networks

Idea from 1950-s:

Can we imitate the brain to create AI?

consists of many similar units (neurons) that send signals to each other

Single unit:

Connect them like this:

Single neuron is a decision making machine

Is it a good time to go pick blueberries?

Is it a good time to go pick blueberries?

 $Decision = w_1 \times season + w_2 \times weather + w_3 \times bear$

Exercise:	<i>w</i> ₁	<i>w</i> ₂	<i>w</i> ₃	season	weather	bear
Try to find weights W_1, \ldots, W_2				1	1	0
				1	0	0
to make decisions				1	0	1
with this formula				0	1	0

Neural Networks

Why do we need multiple layers?

Single neuron is not powerful enough for things like computer vision

Multi-layer Networks

Feature extraction layer

Image: Wikimedia Commons

Completing the Neuron

 $Decision = w_1 \times season + w_2 \times weather + w_3 \times bear$

<i>w</i> ₁	<i>w</i> ₂	<i>w</i> ₃	season	weather	bear	"Decision"
2.6	0.5	-1	1	1	0	3.1
			1	0	0	2.6
			1	0	1	1.6
			0	1	0	0.5

TODO: discuss: add activation function, then need bias

Training Neural Networks

We're classifying cats and dogs TODO: simplify

 $\hat{\mathbf{y}}_k$: output neuron k that says "this is a cat"

 y_k : what we really wanted

$x_1 \dots x_n$	\hat{y}_k	<i>y</i> _{<i>k</i>}	Error
Cat data	0.78	1	0.22
Dog data	0.33	0	-0.33
Cat data 2	0.96	1	0.04

Goal: try to make error close to 0

Training Neural Networks

some explanation based on optimizing the weights

maybe mention things like autograd

Model Size

Cost of training (very roughly)

model	application	year	parameters	4090 time*
LeNet-5	handwritten digits	1998	44000	few seconds
AlexNet	image classification	2012	62 million	2 hours
BERT	natural language	2018	340 million	15 days
GPT-4	"general purpose"	2023	1 trillion	10000 years

*- computing time to do the needed FLOPS on a Nvidia RTX 4090

k-Nearest Neighbors

No model needed! Which species is the black dot?

"The Iris Flower Dataset" R. Fisher (1936)

Decision Trees

A human deciding *"Should I wait for a table at this restaurant?"*

We can learn a tree like this **automatically**

Decision Trees: Learn from Data

Alt: alternative nearby Res: have reservation Est: estimated waiting time

Will Wait:

the decision

to learn

Alt	Bar	Friday	Hungry	Patrons	Price	Rain	Res	Туре	Est	Will Wait
Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	Yes
Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	No
No	Yes	No	No	Some	\$	No	No	Burger	0-10	Yes
Yes	No	Yes	Yes	Full	\$	No	No	Thai	10-30	Yes
Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	No
No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	Yes
No	Yes	No	No	None	\$	Yes	No	Burger	0-10	No
No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	Yes
No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	No
Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	No
No	No	No	No	None	\$	No	No	Thai	0-10	No
Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	Yes

Building a Decision Tree

Start somewhere: pick an attribute, look at possible values

Building a Decision Tree

Next attribute:

Building a Decision Tree

Prefer attributes that predict the answer better:

The Restaurant Example

Automatically learned tree:

Ensemble learning

What is the probability of throwing two coins and getting "tails" twice?

Probability of three independent models with 90% accuracy, ALL being wrong?

Three independent 90% models, 2 or more (majority) are correct? **0.972**

Image CC-BY-SA-4.0, science.org.au

Ensemble learning

Example: Boosting

- 1. Train multiple different models *h*
- 2. Decisions by weighted majority vote

Ensemble learning

Individual models can be "dumb"

Decision stump for the restaurant example:

Algorithms: AdaBoost, xgBoost, LightGBM

Machine Learning Basics

- Data should be representative
- Must have enough examples/feedback to train
- Training the model is NOT the goal

Example with these basics: face recognition

Maybe I should include other people?

What am I actually trying to do? And who will draw these boundary boxes?

Awesome, does it work in my application now?

Evaluating Models

Unbalanced data: 10000000 card transactions, 1000 fraudulent

No joke: a model rewarded by (optimized by) accuracy adopts such strategies

Fix: measure the right thing:
$$Recall = \frac{TP}{TP + FN}$$

Constant "Not fraud" has $Recall = \frac{0}{0 + 1000} = 0$

99.99% accuracy predictor

TP - true positive (fraud) FN - false negative (fraud) TP + FN - total fraud (detected and undetected)

Evaluating Models

How about this amazing 100% recall predictor? (unlikely to happen with neural networks)

$$Precision = \frac{TP}{TP+FP} \text{ metric to the rescue } (FP - \text{false positive})$$

Constant "Fraud" predictor:
$$Precision = \frac{1000}{1000000} = 0.01\%$$

Conclusion: use the **right metric(s)** for **your use case** (Proper training with unbalanced data is a separate issue)