
Machine Learning
week 2, 2024

The Problem of Perception

Some problems are hard to solve by programming

Example: computer vision

Radovic, Matija, Offei Adarkwa, and Qiaosong Wang. "Object recognition in aerial images using
convolutional neural networks." Journal of Imaging 3.2 (2017): 21.

Difficult Functions

AlphaStar playing StarCraft II:

Input: recent history (𝑡 − 1, 𝑡 − 2, …)
of 10000 input variables

Output: choose between
1026 possible actions

This extremely difficult function
is computed by a neural network

Vinyals, Oriol, et al. "Grandmaster level in
StarCraft II using multi-agent reinforcement
learning." Nature 575.7782 (2019): 350-354.

Motivation

For problems that:

• are unreasonably difficult to compute

• or, we have no idea how to compute

Machine learning may provide an approximate solution

Usage Example

Problem: recognize handwritten digits automatically

You have some examples:

(Like the 60000 images

in the MNIST dataset;

https://en.wikipedia.org/wiki/MNIST_database)

https://en.wikipedia.org/wiki/MNIST_database

Usage Example

Step 1: show the examples to the magic black box:

Machine
Learning

“These are 1-s”

“These are 2-s”

“These are 3-s”

Usage Example

Step 2: the magic box will start answering based on the examples

Problem solved!

(Provided that it works reliably enough –

usually the data you needed this for should be similar to examples)

Machine
Learning

“What is this?” 3

Making the magic box

There are many machine learning methods,

we will study only a few in this course

Starting focus: neural networks ?

Artificial Neuron

Idea from 1950-s:

Can we imitate the brain to create AI?

consists of many similar units (neurons) that send signals to each other

Artificial Neuron

Single unit: Connect them like this:

Artificial Neuron

Single neuron is a decision making machine

Is it a good time to go pick blueberries?

it’s blueberry season (season=1)

the weather is nice (weather=1)

no bear sightings (bear=0)

weights
? Yes

inputs expected decision

Artificial Neuron

Is it a good time to go pick blueberries?

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑤1 × 𝑠𝑒𝑎𝑠𝑜𝑛 + 𝑤2 × 𝑤𝑒𝑎𝑡ℎ𝑒𝑟 + 𝑤3 × 𝑏𝑒𝑎𝑟

Exercise:

Try to find weights w1, … , 𝑤3

to make decisions

with this formula

season weather bear

1 1 0

1 0 0

1 0 1

0 1 0

𝒘𝟏 𝒘𝟐 𝒘𝟑

Neural Networks

Why do we need multiple layers?

Single neuron is not powerful enough

for things like computer vision

digit “5”

another “5”

neuron
weights

match ☺

NO match

Multi-layer Networks

Feature extraction layer

Image: Wikimedia Commons

Completing the Neuron

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑤1 × 𝑠𝑒𝑎𝑠𝑜𝑛 + 𝑤2 × 𝑤𝑒𝑎𝑡ℎ𝑒𝑟 + 𝑤3 × 𝑏𝑒𝑎𝑟

TODO: discuss: add activation function, then need bias

season weather bear “Decision”

1 1 0 3.1

1 0 0 2.6

1 0 1 1.6

0 1 0 0.5

𝒘𝟏 𝒘𝟐 𝒘𝟑

2.6 0.5 -1

Training Neural Networks

We’re classifying cats and dogs TODO: simplify

ŷ𝑘 : output neuron 𝑘 that says “this is a cat”

𝑦𝑘 : what we really wanted

Goal: try to make error close to 0

𝒙𝟏 … 𝒙𝒏 ŷ𝑘 𝒚𝒌 Error

Cat data 0.78 1 0.22

Dog data 0.33 0 -0.33

Cat data 2 0.96 1 0.04

Training Neural Networks

some explanation based on optimizing the weights

maybe mention things like autograd

Model Size

Cost of training (very roughly)

*- computing time to do the needed FLOPS on a Nvidia RTX 4090

model application year parameters 4090 time*

LeNet-5 handwritten digits 1998 44000 few
seconds

AlexNet image classification 2012 62 million 2 hours

BERT natural language 2018 340 million 15 days

GPT-4 “general purpose” 2023 1 trillion 10000 years

k-Nearest Neighbors

No model needed!

Which species is the black dot?

“The Iris Flower Dataset”

R. Fisher (1936)
0

0.5

1

1.5

2

2.5

3

0 2 4 6 8

P
et

al
 W

id
th

Petal Length

petal length=5.1
width=1.9

Decision Trees

A human deciding

“Should I wait for a

table at this restaurant?”

We can learn a tree

like this automatically

Decision Trees: Learn from Data

Alt: alternative nearby

Res: have reservation

Est: estimated waiting time

Will Wait:

the decision

to learn

Alt Bar Friday Hungry Patrons Price Rain Res Type Est
Will
Wait

Yes No No Yes Some $$$ No Yes French 0-10 Yes

Yes No No Yes Full $ No No Thai 30-60 No

No Yes No No Some $ No No Burger 0-10 Yes

Yes No Yes Yes Full $ No No Thai 10-30 Yes

Yes No Yes No Full $$$ No Yes French >60 No

No Yes No Yes Some $$ Yes Yes Italian 0-10 Yes

No Yes No No None $ Yes No Burger 0-10 No

No No No Yes Some $$ Yes Yes Thai 0-10 Yes

No Yes Yes No Full $ Yes No Burger >60 No

Yes Yes Yes Yes Full $$$ No Yes Italian 10-30 No

No No No No None $ No No Thai 0-10 No

Yes Yes Yes Yes Full $ No No Burger 30-60 Yes

Building a Decision Tree

Start somewhere: pick an attribute, look at possible values

Can decide immediately:
all cases with “None” and “Some”
have the same “WillWait” value

Decision not clear yet –
need to check more attributes

Building a Decision Tree

Next attribute:

Patrons = “Full” and Hungry = “No”:
decision possible (WillWait = “No”) Need more attributes

to decide

Building a Decision Tree

Prefer attributes that predict the answer better:

Before Type:
50/50

After Type:
each branch still 50/50,
no new information

The Restaurant Example

Automatically learned tree:

Ensemble learning

What is the probability of throwing two coins

and getting “tails” twice?

Probability of three independent models

with 90% accuracy, ALL being wrong?

Three independent 90% models,

2 or more (majority) are correct? 0.972
Image CC-BY-SA-4.0, science.org.au

Ensemble learning

Example: Boosting

1. Train multiple different
models ℎ

2. Decisions by weighted
majority vote

Ensemble learning

Individual models can be “dumb”

Decision stump for the restaurant example:

Algorithms: AdaBoost, xgBoost, LightGBM

based on
weighted samples

Machine Learning Basics

• Data should be representative

• Must have enough examples/feedback to train

• Training the model is NOT the goal

Example with these basics: face recognition

Maybe I should
include other
people?

What am I
actually trying to
do? And who will
draw these
boundary boxes?

Awesome,
does it work
in my
application
now?

99.99%
on training
set

Images: Wikimedia Commons

Evaluating Models

Unbalanced data:

10000000 card transactions, 1000 fraudulent

No joke: a model rewarded by (optimized by)

accuracy adopts such strategies

Fix: measure the right thing: 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁

Constant “Not fraud” has 𝑅𝑒𝑐𝑎𝑙𝑙 =
0

0+1000
= 0

99.99% accuracy
predictor

𝑇𝑃 – true positive (fraud)
𝐹𝑁 – false negative (fraud)
𝑇𝑃 + 𝐹𝑁 – total fraud
(detected and undetected)

Evaluating Models

How about this amazing 100% recall predictor?

(unlikely to happen with neural networks)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 metric to the rescue (𝐹𝑃 – false positive)

Constant “Fraud” predictor: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1000

10000000
= 0.01%

Conclusion: use the right metric(s) for your use case

(Proper training with unbalanced data is a separate issue)

	Slide 1: Machine Learning
	Slide 2: The Problem of Perception
	Slide 3: Difficult Functions
	Slide 4: Motivation
	Slide 5: Usage Example
	Slide 6: Usage Example
	Slide 7: Usage Example
	Slide 8: Making the magic box
	Slide 9: Artificial Neuron
	Slide 10: Artificial Neuron
	Slide 11: Artificial Neuron
	Slide 12: Artificial Neuron
	Slide 13: Neural Networks
	Slide 14: Multi-layer Networks
	Slide 15: Completing the Neuron
	Slide 16: Training Neural Networks
	Slide 17: Training Neural Networks
	Slide 18: Model Size
	Slide 19: k-Nearest Neighbors
	Slide 20: Decision Trees
	Slide 21: Decision Trees: Learn from Data
	Slide 22: Building a Decision Tree
	Slide 23: Building a Decision Tree
	Slide 24: Building a Decision Tree
	Slide 25: The Restaurant Example
	Slide 26: Ensemble learning
	Slide 27: Ensemble learning
	Slide 28: Ensemble learning
	Slide 29: Machine Learning Basics
	Slide 30: Evaluating Models
	Slide 31: Evaluating Models

