
Simple neural network to recognize handwritten

digits

Ottokar Tilk

1 Description

The network has 3 layers (Figure 1). The input dimensionality is m and output
dimensionality is o. Number of hidden units is n. For the MNIST dataset the
m is 784 (each image is 28x28 pixels) and o is 10 (each image represents a digit
in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}). For simplicity we are omitting biases.

Figure 1: Architecture of the neural network.

2 Forward pass

2.1 Hidden layer

The input to the hidden unit is

z1(j) =

m∑
i=1

x(i)W1(i, j)

Hidden unit activation is the logistic sigmoid function

y1(j) =
1

1 + e−z1(j)
(1)

1



2.2 Output layer

The input to the output unit is

z2(k) =

n∑
j=1

y1(j)W2(j, k)

Output unit activation is the softmax function

y2(k) =
ez2(k)∑o
l=1 e

z2(l)
(2)

2.3 Error function

A suitable error function for our classification problem is the cross entropy
function:

E = −
o∑

k=1

t(k) ln y2(k) = − ln y2(c)

where t is the one-hot encoded target vector. For example: if the correct answer
c=6, then t would be [0 0 0 0 0 0 1 0 0 0].

3 Backward pass

3.1 Error derivative

The error derivative is non-zero only with respect to one output - the one that
corresponds to the correct answer c. The derivative with respect to that output
y2(c) is

∂E

∂y2(c)
= − 1

y2(c)

3.2 Output layer

The derivative of the softmax activation y2(c) with respect to its input z2(c) is

∂y2(c)

∂z2(c)
=
ez2(c)

∑o
l=1 e

z2(l) − ez2(c)ez2(c)

(
∑o

l=1 e
z2(l))2

= y2(c)
(
1− y2(c)

)
For all other units k 6= c the derivative is

∂y2(c)

∂z2(k)
=

0− ez2(c)ez2(k)

(
∑o

l=1 e
z2(l))2

= y2(c)
(
0− y2(k)

)
These two cases can be written as one formula:

∂y2(c)

∂z2(k)
= y2(c)

(
δck − y2(k)

)
where δck is Kronecker delta which equals 1 if i = j and 0 otherwise. We can
replace δck with t(k) and get

∂y2(c)

∂z2(k)
= y2(c)

(
t(k)− y2(k)

)
2



The derivative of the input to unit k with respect to its weight W2(j, k) is

∂z2(k)

∂W2(j, k)
= y1(j)

So the error derivative with respect to output layer weight W2(j, k) is

∂E

∂W2(j, k)
=

∂E

∂y2(c)

∂y2(c)

∂z2(k)

∂z2(k)

∂W2(j, k)
=

= − 1

y2(c)
y2(c)

(
t(k)− y2(k)

)
y1(j) =

=
(
y2(k)− t(k)

)
y1(j)

The weight is updated with

∆W2(j, k) = −α ∂E

∂W2(j, k)

where α is the learning rate. The derivative of the input to the output unit
z2(k) with respect to the output of the lower layer hidden unit y1(j) is

∂z2(k)

∂y1(j)
= W2(j, k)

To get the error derivative with respect to lower layer outputs y1(j) we need to
sum over all output units (see the variable dependence diagram in Figure 2)

∂E

∂y1(j)
=

o∑
k=1

∂E

∂y2(c)

∂y2(c)

∂z2(k)

∂z2(k)

∂y1(j)
=

=

o∑
k=1

− 1

y2(c)
y2(c)

(
t(k)− y2(k)

)
W2(j, k) =

=

o∑
k=1

(
y2(k)− t(k)

)
W2(j, k) (3)

Derivative in Equation 3 is backpropagated to lower layer.

3.3 Hidden layer

The derivative of hidden activation y1(j) with respect to its input z1(j) is

dy1(j)

dz1(j)
= − 1

(1 + e−z1(j))2
e−z1(j)(−1) =

e−z1(j) + 1− 1

(1 + e−z1(j))2
=

=
1 + e−z1(j)

(1 + e−z1(j))2
− 1

(1 + e−z1(j))2
= y1(j)− y1(j)2 = y1(j)

(
1− y1(j)

)
and the derivative of that input with respect to weight W1(i, j) is

∂z1(j)

∂W1(i, j)
= x(i)

3



To get the error derivative with respect to the hidden layer weight W1(i, j) we
use the backpropagated derivative from Equation 3

∂E

∂W1(i, j)
=

∂E

∂y1(j)

∂y1(j)

∂z1(j)

∂z1(j)

∂W1(i, j)
=

=

o∑
k=1

(
y2(k)− t(k)

)
W2(j, k)y1(j)

(
1− y1(j)

)
x(i)

The weight is updated with

∆W1(i, j) = −α ∂E

∂W1(i, j)

Figure 2: Variable dependence diagrams for W2 (left) and W1 (right)

4 Efficient implementation

Layer states and weight gradients can be computed using matrices and vectors
and their operations. Layer inputs can be computed using

zi = yi−1Wi

where y0 = x. Applying the activation function for each layer is the same as in
Equations 1 and 2. For output layer gradients we get

∂E

∂W2
= yT1 (y2 − t)

and for hidden layer (* is element-wise multiplication)

∂E

∂W1
= xT

(
(y2 − t)WT

2 ∗ y1 ∗ (1− y1)
)

where W1 and W2 are matrices and all others are row vectors.

4


