Simple neural network to recognize handwritten digits

Ottokar Tilk

1 Description

The network has 3 layers (Figure 1). The input dimensionality is m and output dimensionality is o. Number of hidden units is n. For the MNIST dataset the m is 784 (each image is 28×28 pixels) and o is 10 (each image represents a digit in $\{0,1,2,3,4,5,6,7,8,9\})$. For simplicity we are omitting biases.

Figure 1: Architecture of the neural network.

2 Forward pass

2.1 Hidden layer

The input to the hidden unit is

$$
z_{1}(j)=\sum_{i=1}^{m} x(i) W_{1}(i, j)
$$

Hidden unit activation is the logistic sigmoid function

$$
\begin{equation*}
y_{1}(j)=\frac{1}{1+e^{-z_{1}(j)}} \tag{1}
\end{equation*}
$$

2.2 Output layer

The input to the output unit is

$$
z_{2}(k)=\sum_{j=1}^{n} y_{1}(j) W_{2}(j, k)
$$

Output unit activation is the softmax function

$$
\begin{equation*}
y_{2}(k)=\frac{e^{z_{2}(k)}}{\sum_{l=1}^{o} e^{z_{2}(l)}} \tag{2}
\end{equation*}
$$

2.3 Error function

A suitable error function for our classification problem is the cross entropy function:

$$
E=-\sum_{k=1}^{o} t(k) \ln y_{2}(k)=-\ln y_{2}(c)
$$

where t is the one-hot encoded target vector. For example: if the correct answer $\mathrm{c}=6$, then t would be $\left[\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array} 0\right.$

3 Backward pass

3.1 Error derivative

The error derivative is non-zero only with respect to one output - the one that corresponds to the correct answer c. The derivative with respect to that output $y_{2}(c)$ is

$$
\frac{\partial E}{\partial y_{2}(c)}=-\frac{1}{y_{2}(c)}
$$

3.2 Output layer

The derivative of the softmax activation $y_{2}(c)$ with respect to its input $z_{2}(c)$ is

$$
\frac{\partial y_{2}(c)}{\partial z_{2}(c)}=\frac{e^{z_{2}(c)} \sum_{l=1}^{o} e^{z_{2}(l)}-e^{z_{2}(c)} e^{z_{2}(c)}}{\left(\sum_{l=1}^{o} e^{z_{2}(l)}\right)^{2}}=y_{2}(c)\left(1-y_{2}(c)\right)
$$

For all other units $k \neq c$ the derivative is

$$
\frac{\partial y_{2}(c)}{\partial z_{2}(k)}=\frac{0-e^{z_{2}(c)} e^{z_{2}(k)}}{\left(\sum_{l=1}^{o} e^{z_{2}(l)}\right)^{2}}=y_{2}(c)\left(0-y_{2}(k)\right)
$$

These two cases can be written as one formula:

$$
\frac{\partial y_{2}(c)}{\partial z_{2}(k)}=y_{2}(c)\left(\delta_{c k}-y_{2}(k)\right)
$$

where $\delta_{c k}$ is Kronecker delta which equals 1 if $i=j$ and 0 otherwise. We can replace $\delta_{c k}$ with $t(k)$ and get

$$
\frac{\partial y_{2}(c)}{\partial z_{2}(k)}=y_{2}(c)\left(t(k)-y_{2}(k)\right)
$$

The derivative of the input to unit k with respect to its weight $W_{2}(j, k)$ is

$$
\frac{\partial z_{2}(k)}{\partial W_{2}(j, k)}=y_{1}(j)
$$

So the error derivative with respect to output layer weight $W_{2}(j, k)$ is

$$
\begin{gathered}
\frac{\partial E}{\partial W_{2}(j, k)}=\frac{\partial E}{\partial y_{2}(c)} \frac{\partial y_{2}(c)}{\partial z_{2}(k)} \frac{\partial z_{2}(k)}{\partial W_{2}(j, k)}= \\
=-\frac{1}{y_{2}(c)} y_{2}(c)\left(t(k)-y_{2}(k)\right) y_{1}(j)= \\
=\left(y_{2}(k)-t(k)\right) y_{1}(j)
\end{gathered}
$$

The weight is updated with

$$
\Delta W_{2}(j, k)=-\alpha \frac{\partial E}{\partial W_{2}(j, k)}
$$

where α is the learning rate. The derivative of the input to the output unit $z_{2}(k)$ with respect to the output of the lower layer hidden unit $y_{1}(j)$ is

$$
\frac{\partial z_{2}(k)}{\partial y_{1}(j)}=W_{2}(j, k)
$$

To get the error derivative with respect to lower layer outputs $y_{1}(j)$ we need to sum over all output units (see the variable dependence diagram in Figure 2)

$$
\begin{gather*}
\frac{\partial E}{\partial y_{1}(j)}=\sum_{k=1}^{o} \frac{\partial E}{\partial y_{2}(c)} \frac{\partial y_{2}(c)}{\partial z_{2}(k)} \frac{\partial z_{2}(k)}{\partial y_{1}(j)}= \\
=\sum_{k=1}^{o}-\frac{1}{y_{2}(c)} y_{2}(c)\left(t(k)-y_{2}(k)\right) W_{2}(j, k)= \\
=\sum_{k=1}^{o}\left(y_{2}(k)-t(k)\right) W_{2}(j, k) \tag{3}
\end{gather*}
$$

Derivative in Equation 3 is backpropagated to lower layer.

3.3 Hidden layer

The derivative of hidden activation $y_{1}(j)$ with respect to its input $z_{1}(j)$ is

$$
\begin{gathered}
\frac{d y_{1}(j)}{d z_{1}(j)}=-\frac{1}{\left(1+e^{-z_{1}(j)}\right)^{2}} e^{-z_{1}(j)}(-1)=\frac{e^{-z_{1}(j)}+1-1}{\left(1+e^{-z_{1}(j)}\right)^{2}}= \\
=\frac{1+e^{-z_{1}(j)}}{\left(1+e^{-z_{1}(j)}\right)^{2}}-\frac{1}{\left(1+e^{-z_{1}(j)}\right)^{2}}=y_{1}(j)-y_{1}(j)^{2}=y_{1}(j)\left(1-y_{1}(j)\right)
\end{gathered}
$$

and the derivative of that input with respect to weight $W_{1}(i, j)$ is

$$
\frac{\partial z_{1}(j)}{\partial W_{1}(i, j)}=x(i)
$$

To get the error derivative with respect to the hidden layer weight $W_{1}(i, j)$ we use the backpropagated derivative from Equation 3

$$
\begin{gathered}
\frac{\partial E}{\partial W_{1}(i, j)}=\frac{\partial E}{\partial y_{1}(j)} \frac{\partial y_{1}(j)}{\partial z_{1}(j)} \frac{\partial z_{1}(j)}{\partial W_{1}(i, j)}= \\
=\sum_{k=1}^{o}\left(y_{2}(k)-t(k)\right) W_{2}(j, k) y_{1}(j)\left(1-y_{1}(j)\right) x(i)
\end{gathered}
$$

The weight is updated with

$$
\Delta W_{1}(i, j)=-\alpha \frac{\partial E}{\partial W_{1}(i, j)}
$$

Figure 2: Variable dependence diagrams for W_{2} (left) and W_{1} (right)

4 Efficient implementation

Layer states and weight gradients can be computed using matrices and vectors and their operations. Layer inputs can be computed using

$$
z_{i}=y_{i-1} W_{i}
$$

where $y_{0}=x$. Applying the activation function for each layer is the same as in Equations 1 and 2. For output layer gradients we get

$$
\frac{\partial E}{\partial W_{2}}=y_{1}^{T}\left(y_{2}-t\right)
$$

and for hidden layer (* is element-wise multiplication)

$$
\frac{\partial E}{\partial W_{1}}=x^{T}\left(\left(y_{2}-t\right) W_{2}^{T} * y_{1} *\left(1-y_{1}\right)\right)
$$

where W_{1} and W_{2} are matrices and all others are row vectors.

