Simple Cryptosystems and Attacks

Ahto Buldas

September 10, 2018

Cryptosystem

X - set of all possible plaintexts
\mathbf{Y} - set of all possible ciphertexts
\mathbf{Z} - set of all possible keys
Encryption and Decryption: For every $z \in \mathbf{Z}$, there are functions

$$
E_{z}: \mathbf{X} \rightarrow \mathbf{Y} \quad \text { and } \quad D_{z}: \mathbf{Y} \rightarrow \mathbf{X}
$$

such that $D_{z}\left(E_{z}(x)\right)=x$ for every $x \in \mathbf{X}$

Encrypted Communication

Kerckhoffs assumption: If given z, attacker can compute E_{z} and D_{z} Secrecy: Attacker must not be able to deduce x from y.

Permutation Cipher

Letters of the message are permuted

\mathbf{X} - all possible n-letter texts
\mathbf{Z} - all possible ways of permuting the letters of the message

$$
|\mathbf{Z}|=n!=2 \cdot 3 \cdot \ldots \cdot(n-1) \cdot n
$$

Substitution Cipher

Every letter is substituted with another letter, by using a table:
A B C DEFGHIJKLMNOPQRSTUVWXYZ
Q F Y B R I W Z D J G X O P K N V S A H C L T E M U
For example a plaintext MESSAGE is encrypted to ORAAQWR:
MESSAGE
O R A A Q W R

X - all possible texts
\mathbf{Z} - all possible permutations of the 26 -letter alphabet
$|\mathbf{Z}|=26!=2 \cdot 3 \cdot \ldots \cdot 25 \cdot 26 \approx 2^{88}$

Shift Cipher

Circular shift of the alphabet

For example, Julius Caesar (100-44 a.d.) used shift by three:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

X - all possible texts
\mathbf{Z} - all possible shifts of the 26 -letter alphabet
$|\mathbf{Z}|=26$

Computers and Cryptography

Convert letters to numbers:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
$\begin{array}{llllllllllllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25\end{array}$

Shift cipher $y=E_{z}(x)$, where $x, y, z \in\{0,1,2, \ldots, 25\}$:

$$
y=E_{z}(x)=x+z \bmod 26= \begin{cases}x+z & \text { if } x+z<26 \\ x+z-26 & \text { if } x+z \geq 26\end{cases}
$$

General shift cipher $y=E_{z}(x)$, where $x, y, z \in\{0,1,2, \ldots, n-1\}$:

$$
y=E_{z}(x)=x+z \bmod n= \begin{cases}x+z & \text { if } x+z<n \\ x+z-n & \text { if } x+z \geq n\end{cases}
$$

One-Time Pad

Use shift cipher
Encrypt every letter x with a different, independently chosen random key z
\mathbf{X} - all possible n-letter messages: $x_{1} x_{2} \ldots x_{n}$
\mathbf{Z} - all possible n-letter keys: $z_{1} z_{2} \ldots z_{n}$
\mathbf{Y} - all possible n-letter ciphertexts: $y_{1} y_{2} \ldots y_{n}$

$$
y_{i}=x_{i}+z_{i} \quad \bmod 26
$$

Unbreakable: ciphertext contains no information about the plaintext, except its size

Main Attacking Strategies

- Trial decryption, using all possible keys. Need to recognize the right key!
- Derivation using plaintext-ciphertext pairs
- Language statistics may be transferred from plaintext to ciphertext

Passive Attacks

- Known ciphertext: attacker knows a ciphertext Y
- Known plaintext: attacker knows plaintext-ciphertext pairs $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$

Active attacks: Chosen Plaintext

Phase 1:

Phase 2:

Active attacks: Chosen Ciphertext

Phase 1:
Phase 2:

