DEDUCTIVE VERIFICATION (EXAMPLE)

Construct an invariant and prove partial correctness of the deterministic program with given pre- and post-conditions.

$$
\{N \geq 1\}
$$

BEGIN
PROD := 0;
FOR X := 1 UNTIL N DO PROD := PROD + M
END
$\left\{P R O D=M^{*} N\right\}$

Solution

STEP 1: Annotation

For annotating the program we have to add

- pre-condition before each command that is not assignment, i.e. we add condition P1 (see below).
- Invariant in the loop after keyword "DO", i.e., R (see below)
- To avoid long expressions in the beginning of proof we denote the whole program with C and its commands with C 1 and C 2 , i.e. the program C can be considered in symbolic form as parallel composition C1; C2

$$
P \equiv\{N \geq 1\}
$$

BEGIN

C21: \quad PROD := PROD +M
END
$Q \equiv\{P R O D=M * N\}$

STEP 2: Proof

1) +VCl

2) +VC 2

$+\mathrm{PROD}=\mathrm{M}^{*} \mathrm{~N} \Rightarrow \mathrm{PROD}=\mathrm{M}^{*} \mathrm{~N}$	
$+\mathrm{PROD}=\mathrm{M}^{*} N \Rightarrow \mathrm{Q}$	
$\left.\stackrel{(P R O D}{ }=M^{*}(\mathrm{~N}+1-1) \wedge \mathrm{N}+1 \leq \mathrm{N}+1\right) \Rightarrow \mathrm{Q}$	
+(PROD $\left.=\mathrm{M}^{*}(\mathrm{X}-1) \wedge \mathrm{X} \leq \mathrm{N}+1\right)[\mathrm{N}+1 / \mathrm{X}] \Rightarrow \mathrm{Q}$	(${ }^{\text {a }}$
$\stackrel{\mathrm{R}}{ }+\mathrm{N}+1 / \mathrm{X}] \Rightarrow \mathrm{Q}$	

3) +VC 3

4) +VC 4

