
Uppaal Lab Assignments
Deepak Pal

3-March-2018

Assignment 1:
• Model the ATM behavior and try to verify property below:

• Property: The customer always owns total 100 euro in his Wallet and
balance in Bank. Assume Customer has 0 Euros (intially) in his wallet and
100 in bank balance.
– A[] (Customer.Initial_Location and Bank.Initial_Location) imply Customer.cash + Bank.cash == 100

– Initial_Location: is initial location name in your model and

– cash is a local variable name in your model.

Customer Bank ATM

Assignment 2

We suppose that two people are sharing the use of two tools — a hammer
and a mallet — to manufacture objects from simple components.

Each object is made by driving a peg into a block. We call a pair consisting of
a peg and a block a job; the jobs arrive sequentially on a conveyor belt, and
completed objects depart on a conveyor belt.

To make the example more specific, we shall assume that the nature of the
job influences the jobber’s actions in a particular way. We suppose that he
may use three predicates easy, average and hard over jobs, to determine
whether a job is easy or hard or average. He will do easy jobs with his hands,
hard jobs with both the hammer, and mallet and average jobs with either
hammer or mallet.

Job shop

Consider this sequence of jobs on belt for Tasks

Task 1: When Hard Job require both Mallet and Hammer with order
 constraint i.e. first Hammer is require and then Mallet to finish the job.

 get_Hammer --> put_Hammer --> get_Mallet --> put_Mallet !

 Try to finish all the jobs without deadlock in the model.

See solution "Worker_Case1” in Lab 3 material.

Job shop

Task 2: When Hard Job require both Mallet and Hammer without any order constraint i.e.
 any free tool can be used to finish the job.

 get_Hammer --> put_Hammer --> get_Mallet --> put_Mallet or

 get_Mallet --> put_Mallet --> get_Hammer --> put_Hammer !

 Try to finish all the jobs without deadlock in the model.

 See solution "Worker_Case2” in Lab 3 material

A[] not deadlock : Use this property to check deadlock in your model

Job shop

Task 3: When Hard Job require both Mallet and Hammer at the same time i.e. both tools
 must be free to finish the job, order constraint (get hammer and mallet) is very
 important here.

 get_Hammer --> get_Mallet --> put_Hammer --> put_Mallet or

 get_Mallet --> get_Hammer --> put_Mallet --> put_Hammer !

 Try to create a deadlock in the model, where one worker is waiting for other
 worker to release the tools.

 See solution "Worker_Case3” in Lab 3 material

Task 4: Resolve the deadlock in Task 3 by using mutual exclusion algorithm
 concepts.

A[] not deadlock : Use this property to check deadlock in your model

Assignment 3

The Mutual Exclusion Problem

Implementation of Mutual Exclusion Algorithm

• First Attempt (see model below)

• Assignment: model other algorithms similarly as First Attempt Algo done.
– Second Attempt

– Third Attempt

– Fourth Attempt

– Dekker’s Algorithm

All Algorithms description is available in lab lecture slides !!

Discussion and Defense

• Defend all the assignment in Lab (22-March-
2018).

