
Proving partial correctness of 
while-programs

Lecture #6.2



Notations used in verification

 Assertions to be proved in program verification:

 Statements of mathematics: 
(x + 1)2 = x2 + 2x +1

 Partial correctness specifications:
{P} C {Q}

 Total correctness specifications 
[P] C [Q]

J.Vain
21.03.2018

2



Basic terms in formal logic
 Floyd-Hoare logic (FHL) gives rules for proving the partial and total 

correctness of programs, i.e. terms ⊢ {P} C {Q} and ⊢ [P] C [Q] 

 Predicate calculus gives rules for proving theorems of predicate logic
 Arithmetics gives decision rules for proving statements about numbers

 Theorems are statements, which can be proved to be true or false.

 Axioms are statements which are assumed to be true. 
 ⊢ S means that S can be proved (unconditionally) using proof rules.

 Γ ⊢ S means that S can be deduced from the axioms  Γ ={A1, A2, ..., 
An} using proof rules.

J.Vain 21.03.2018 3



Elements of proof theory
 Deduction (proof) - sequence (tree) of statements where

every statement is either 
 an axiom  or
 deduced from true statements by proof rules 

 Properties of the proof rules:
 Correctness (soundness) - it is not possible to deduce something that is 

not correct from correct assumptions.
 Completeness - all statements that are valid are deducible from axioms 

using the proof rules.

 Deduction system ≅ set of axioms (or axiom schemas) + set of 
inference rules

J.Vain 21.03.2018 4



Proof

 Typically the proof has a shape of a tree where 
 theorem is the root of the tree and 
 axioms are leaves. 
 The edges correspond to applications of inference rules

J.Vain 21.03.2018 5

THEOREM

…

axiom

axiom
axiomaxiom

axiom

Fo
rw

ar
d 

pr
ov

in
g

Ba
ck

w
ar

d 
pr

ov
in

g



Inference rule
 The inference rule is an instruction on how to make a proof step
 The rules may have differenct form. The rules of FHL are of the form

⊢ S1, . . . , ⊢ Sn
⊢ S

 This means the conclusion ⊢ S may be deduced from the hypotheses
⊢ S1, . . . , ⊢ Sn

 The hypotheses can either be theorems of FHL or predicate calculus
 Example: (a rule of propositional logic) 

⊢ p ⇒ q ⊢ q ⇒ p
⊢ p ⇔ q

conclusion

hypothesis

J.Vain 21.03.2018 6



Hoare type proof systems
 There is an axiom or inference rule for “elimination“ of 

programming language constructs such as if, while etc. from 
HFL formulae.

 This allows to simplify the triples in backward proofs.

 Instead of concrete axioms FHL uses axiom schemas that are 
instantiated by concrete program conditions.

 The order of applying inference rules in the proof is 
determined by the syntactic structure of the program to be 
verified. 

 This makes constructing proofs much easier.

J.Vain 21.03.2018 7



The rules of FHL: sequential 
composition

 Syntax:

⊢ {P} C1 {Q}, ⊢ {Q} C2 {R},
⊢ {P} C1 ; C2 {R}

 Semantics:
If triples {P}C1{Q} and {Q}C2{R}, have proofs, then also triple that 
includes sequential composition of C1 and C2, i.e.  {P} C1; C2 {R} 
has a proof.

 Example:

⊢ {X = 1}  X:=X+1 {X = 2} ⊢ {X = 2} X:=X+1 {X = 3}
⊢ {X = 1}  X:=X+1; X:=X+1  {X = 3}

J.Vain 21.03.2018 8



FHL rules: sequential 
composition example 

Assume we have given tripples 1-3:
1. ⊢ {X = x ∧ Y = y} R := X {R = x ∧ Y = y}  
2. ⊢ {R = x ∧ Y = y} X := Y {R = x ∧ X = y}  
3. ⊢ {R = x ∧ X = y} Y := R {Y = x ∧ X = y}

by sequential coposition rule (1.) and (2.) provide
4. ⊢ {X = x ∧ Y = y} R:= X; X:= Y {R= x ∧ X = y}

and (4.), (3.) yield
5. ⊢ {X = x ∧ Y = y} R:= X ; X:= Y ; Y:= R {Y = x ∧ X = y}

J.Vain 21.03.2018 9



FHL rules: SKIP-axiom

 Syntax: 
⊢ {P} SKIP {P}

 Semantics: 
 Program state does not change when skip is executed

 Explanation:
 This is axiom scheme where P may be any assertion

 Examples of concrete SKIP-axioms:
 ⊢ {Y = 2} SKIP {Y = 2}
 ⊢ { T } SKIP { T }
 ⊢ {Y = K × X + R} SKIP {Y = K × X + R}

J.Vain 21.03.2018 10



FHL rules: assignment
 Syntax:  V:=E

 Semantics: 
The state is changed by assigning the value of the term E to the 

variable V. All other variables preserve their values
 Example: Y:=Y+5

This adds 5 to the value of the variable Y.

 Variable substitution:
 P[E/V] denotes the result of replacing all occurrences of V in P by E.

 Example: (X + 1 > X) [Y + Z / X]  =  ((Y + Z) + 1 > Y + Z)

 Following property holds: V[E/V] = E

J.Vain 21.03.2018 11



FHL: assignment axiom:
⊢ {P[E/V]} V:=E {P}

where
 V is variable, E is an expression, P is any statement
 P[E/V] – denotes the result of substituting the term E for all 

occurrences of the variable V in statement P.

 Explanation:
 the value of a variable V after executiong an assignment V:=E 
 equals the value of the expression E in the state before 

executing it.

 Example:
 ⊢ {Y = 2} X:=2 {Y = X}
 ⊢ {Z =  XY } X:=X**Y {Z = X}

J.Vain 21.03.2018 12



FHL rules: precondition 
strenghtening

⊢ P ⇒ P' ⊢ {P'} C {Q}
⊢ {P} C {Q}

 Application example_
From implication ⊢ X = n ⇒ X + 1 = n + 1    
and 
assignment axiom ⊢ {X + 1 = n + 1} X := X + 1 {X = n + 1}
we can deduce

⊢ {X = n} X := X + 1 {X = n + 1}, 

where n is auxilliary variable that occurs only in pre-and post-
conditions .

J.Vain 21.03.2018 13



FHL rules: postcondition weakening

⊢ {P} C {Q'} ⊢Q' ⇒ Q
⊢ {P} C {Q}

 Example (application of rules in forward reasoning):

Proof step Used inference rule 

1. ⊢ {R = X ∧ 0=0} Q:= 0 {R=X ∧ Q=0} (assignment axiom)
2. ⊢ R = X ⇒ R = X ∧ 0 = 0  (logic equality
3. ⊢ {R = X} Q := 0 {R = X ∧ Q = 0} (precondition strengthening)
4. ⊢ R = X ∧ Q = 0 ⇒ R = X + (Y × Q) (arithmetic equality)
5. ⊢{R = X} Q := 0 {R = X + (Y × Q)} (postcondition weakening)

J.Vain 21.03.2018 14



FHL rules: BEGIN-END -blocks 

 Syntax: 
BEGIN VAR V1; … ;Vn ; C END

 Semantics: 
 Variables V1; … ;Vn  are used locally within the block. After C 

is executed the values of V1; … ;Vn are restored to the values 
they had befor the block was entered

 The initial values for V1; … ;Vn  in the block are unspecified.

 Example:
BEGIN  VAR R; R := X; X:=Y; Y:=R END

 Variables X and Y exchange their values by using an auxiliary 
variable R.

J.Vain 21.03.2018 15



Block-rule:

⊢ {P} C {Q}
⊢ {P} BEGIN VAR V1; … ;Vn ; C END {Q}

where none of the variables V1; … ;Vn occur in P or Q.

Explanation: 
This restriction of variable occurrence in P and Q is because their 
value is determined locally only within the block. Their valuation 
outside the block may be different.

FHL rules: BEGIN-END -blocks 

J.Vain 21.03.2018 16



FHL rules: IF- command

 Syntax:
{P}  IF S THEN C1  ELSE C2 {Q}

 Semantics:
 If the statement S is true (in current state), then C1 is 

executed
 If S is false then C2 is executed

 Example:   
 IF X < Y  THEN  MAX:= Y  ELSE MAX:= X

J.Vain 21.03.2018 17



FHL rules: IF- command

J.Vain 21.03.2018 18

 IF - rule1 (one branch):
⊢ {P ∧ S} C {Q} ⊢ P ∧¬ S ⇒ Q

⊢ {P}  IF S THEN  C {Q}

 IF- rule 2 (two branches):
⊢ {P ∧ S} C1 {Q}, ⊢ {P ∧¬ S} C2 {Q}
⊢ {P}  IF S THEN  C1 ELSE C2 {Q}



FHL rules: application example of 
IF- command

 Example:
Given
 ⊢ {T ∧ X >= Y} MAX := X {MAX = max(X, Y)}

 ⊢ {T ∧ ¬(X >= Y)} MAX := Y {MAX = max(X, Y)}

By IF-rule 2 it follows:
 ⊢ {T} IF X>=Y THEN MAX:=X ELSE  MAX:=Y {MAX= max( X, Y)}

J.Vain 21.03.2018 19



FHL rules: WHILE-command
 Syntax:  WHILE S DO  C

 Semantics:
 If the statement S is true in the current state, then C is executed 

and the WHILE command is repeated.
 If S is false, then exit the command,
 Command C is repeatedly executed until the value of S becomes 

false 
 If S never becomes false, then the execution never terminates

 Example:
WHILE ¬(X = 0) DO  X := X – 2

For which values of X the command does not terminate?

J.Vain 21.03.2018 20



FHL rules: WHILE-command

 Invariants
Suppose

⊢ {P ∧ S} C {P}

then P is an invariant of C whenever S holds.

 Explanation (WHILE-rule):
 if the execution of WHILE-command body C preserves truth value 

of P once, then it preserves this truth value for arbitrary number 
of executions of C.

 If WHILE-command has terminated, then loop condition S must 
be false (because this is WHILE termination condition).

J.Vain 21.03.2018 21



FHL rules: WHILE-command

 (Simple) WHILE–rule:

⊢ {P ∧ S} C {P}

⊢ {P}  WHILE S DO C {P ∧¬ S }

 Extended WHILE-rule:

⊢ P ⇒ R ⊢ {R ∧ S} C {R} ⊢ R ∧ ¬S ⇒ Q

⊢ {P} WHILE S DO C {Q}

J.Vain 21.03.2018 22



WHILE-command: invariant
How to find an invariant?

 It must hold initially when entering the loop
 With negated test it must establish the result of loop
 The body must leave it unchanged

 Intuition: 
 The invariant says that what has been done so far together with 

what remains to be done gives the desired result.

 Analogy with milestone where one face indicates the distance 
passed and the other the distance to go, their sum is the total 
distance between the departure point and destination.

J.Vain 21.03.2018 23



WHILE-command: example 1

 Example (factorial program 1):

{X = n ∧ Y = 1}
WHILE X≠0 DO
BEGIN Y:=Y×X; X:=X-1  END

{X = 0 ∧ Y = n!}

 Analyze the variable values
 Finally X = 0 and Y = n!
 Initially X = n and Y = 1
 On each loop Y is increased and X is decreased.

J.Vain 21.03.2018 24



WHILE-command: example 1

 How the variables keep their values in execution? 
 Y holds the result so far
 X! is what remains to be computed
 n! is the desired result

 The invariant is X! ×Y = n!

J.Vain 21.03.2018 25



WHILE-command: example 2

 Example (factorial program 2):

{X = n ∧ Y = 1}
WHILE X<N DO

BEGIN X:=X+1; Y:=Y×X; END
{Y = N!}

 Analyze the variable values
 Finally X = N and Y = N!
 Initially X = 0 and Y = 1
 On each loop both X and Y increase.

J.Vain 21.03.2018 26



WHILE-command: example 2

 How the values of variables evolve in execution? 
 At end Y = N!
 and ¬(X<N) ⇒ X=N
 The invariant must be

Y = X! ∧ X ≤ N 

J.Vain 21.03.2018 27



FHL rules: conjunction and 
disjunction of specifications

J.Vain 21.03.2018 28

⊢ {P1} C {Q1} ⊢ {P2} C {Q2}
⊢ {P1 ∧ P2} C {Q1 ∧ Q2}

⊢ {P1} C {Q1} ⊢ {P2} C {Q2}
⊢ {P1 ∨ P2} C {Q1 ∨ Q2}

 These rules allow splitting large triples into simpler ones and prove 
them separately. To prove 

⊢ {P1 ∧ P2} C {Q1 ∧ Q2}.

 it sufices proving independently
⊢ {P1} C {Q1}    and      ⊢ {P2} C {Q2}



FHL rules: FOR-command
 Syntax:

FOR V := E1 UNTIL  E2  DO C
 Restriction: index variable V must not occur in E1 or E2 or be the left 

hand side of an assignment in C.

 Semantics:
 If the values of terms E1 and E2 are positive numbers e1 and e2, 

where e1 ≤ e2, then C is executed (e2 – e1) + 1 times
 with the variable V taking values e1,  e1+1, e1+2, … ,  e2.
 for any other value of V the FOR-command acts as skip.

 Example:
FOR  N:=1 UNTIL  M  DO X:=X+N

 expressions E1 and E2 are evaluated only once at the entry to 
FOR-command;

 if E1 and E2 do not have positive integer value or E1>E2, then 
FOR-command does nothing.

J.Vain 21.03.2018 29



Reduction to WHILE-command
 FOR-command 

FOR V:=E1 UNTIL E2 DO C
is equivalent to WHILE-program

BEGIN VAR V;
V:=E1;
WHILE V≥E1 ∧ V≤E2 DO
BEGIN 
C;
V:=V+1

END
END

J.Vain 21.03.2018 30



Annotating the FOR-command
 Having an annotated FOR-command

{P} FOR V:= E1 UNTIL E2 DO {R} C {Q}
 we can transform it to equivalent annotated WHILE program
 Invariant R of this WHILE program must include condition V ≤ E2+1 

{P}
BEGIN VAR V;

V:= E1;
WHILE V≥E1 ∧ V≤E2 DO {R} BEGIN

C;
V:=V+1

END
END
{Q}

J.Vain 21.03.2018 31



FHL rules: FOR-command
 FOR–axiom:

⊢ {R ∧ (E2 < E1)} FOR V:=E1 UNTIL  E2 DO C {R}

 (Primary) FOR–rule:
⊢ {R ∧ (E1 ≤ V) ∧ (V ≤ E2)} C {R[V + 1/V]}

⊢{R[E1/V]} ∧ (E1≤E2)} FOR V:=E1 UNTIL E2 DO C {R[E2+1/V]},

 Extended  FOR–rule:

⊢ P ⇒ R[E1/V] ⊢ R[E2+1/V] ⇒ Q ⊢ P ∧ (E2 < E1) ⇒ Q  
⊢ {R ∧ (E1 ≤ V) ∧ (V ≤ E2)} C {R[V+1/V]}

⊢ {P} FOR V:=E1 UNTIL E2 DO {R} C {Q}

J.Vain 21.03.2018 32



Summary
 The proof system must be sound and complete,
 i.e. it is necessary to show that axioms are valid and inference rules 

imply true conclusions if their hypothesis are true.
 The calculus is complete if all its valid assertions are provable.
 FHL is relative complete if for all programs of the FHL triples 

expressible in it can be transformed to programming construct free 
logic formuli.

 Ed. Clarke proved that for languages that include recursion, static 
scoping, global variables and parametrized procedure calls, there 
does not exist sound and complete FHL.

J.Vain 21.03.2018 33


	Proving partial correctness of while-programs
	Notations used in verification
	Basic terms in formal logic
	Elements of proof theory
	Proof
	Inference rule
	Hoare type proof systems
	The rules of FHL: sequential composition
	FHL rules: sequential composition example 
	FHL rules: SKIP-axiom
	FHL rules: assignment
	FHL: assignment axiom:
	FHL rules: precondition strenghtening
	FHL rules: postcondition weakening
	FHL rules: BEGIN-END -blocks 
	FHL rules: BEGIN-END -blocks 
	FHL rules: IF- command
	FHL rules: IF- command
	FHL rules: application example of IF- command
	FHL rules: WHILE-command
	FHL rules: WHILE-command
	FHL rules: WHILE-command
	WHILE-command: invariant
	WHILE-command: example 1
	WHILE-command: example 1
	WHILE-command: example 2
	WHILE-command: example 2
	FHL rules: conjunction and disjunction of specifications
	FHL rules: FOR-command
	Reduction to WHILE-command
	Annotating the FOR-command
	FHL rules: FOR-command
	Summary

