
Proving partial correctness of 
while-programs

Lecture #6.2



Notations used in verification

 Assertions to be proved in program verification:

 Statements of mathematics: 
(x + 1)2 = x2 + 2x +1

 Partial correctness specifications:
{P} C {Q}

 Total correctness specifications 
[P] C [Q]
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Basic terms in formal logic
 Floyd-Hoare logic (FHL) gives rules for proving the partial and total 

correctness of programs, i.e. terms ⊢ {P} C {Q} and ⊢ [P] C [Q] 

 Predicate calculus gives rules for proving theorems of predicate logic
 Arithmetics gives decision rules for proving statements about numbers

 Theorems are statements, which can be proved to be true or false.

 Axioms are statements which are assumed to be true. 
 ⊢ S means that S can be proved (unconditionally) using proof rules.

 Γ ⊢ S means that S can be deduced from the axioms  Γ ={A1, A2, ..., 
An} using proof rules.
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Elements of proof theory
 Deduction (proof) - sequence (tree) of statements where

every statement is either 
 an axiom  or
 deduced from true statements by proof rules 

 Properties of the proof rules:
 Correctness (soundness) - it is not possible to deduce something that is 

not correct from correct assumptions.
 Completeness - all statements that are valid are deducible from axioms 

using the proof rules.

 Deduction system ≅ set of axioms (or axiom schemas) + set of 
inference rules
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Proof

 Typically the proof has a shape of a tree where 
 theorem is the root of the tree and 
 axioms are leaves. 
 The edges correspond to applications of inference rules
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Inference rule
 The inference rule is an instruction on how to make a proof step
 The rules may have differenct form. The rules of FHL are of the form

⊢ S1, . . . , ⊢ Sn
⊢ S

 This means the conclusion ⊢ S may be deduced from the hypotheses
⊢ S1, . . . , ⊢ Sn

 The hypotheses can either be theorems of FHL or predicate calculus
 Example: (a rule of propositional logic) 

⊢ p ⇒ q ⊢ q ⇒ p
⊢ p ⇔ q

conclusion

hypothesis
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Hoare type proof systems
 There is an axiom or inference rule for “elimination“ of 

programming language constructs such as if, while etc. from 
HFL formulae.

 This allows to simplify the triples in backward proofs.

 Instead of concrete axioms FHL uses axiom schemas that are 
instantiated by concrete program conditions.

 The order of applying inference rules in the proof is 
determined by the syntactic structure of the program to be 
verified. 

 This makes constructing proofs much easier.
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The rules of FHL: sequential 
composition

 Syntax:

⊢ {P} C1 {Q}, ⊢ {Q} C2 {R},
⊢ {P} C1 ; C2 {R}

 Semantics:
If triples {P}C1{Q} and {Q}C2{R}, have proofs, then also triple that 
includes sequential composition of C1 and C2, i.e.  {P} C1; C2 {R} 
has a proof.

 Example:

⊢ {X = 1}  X:=X+1 {X = 2} ⊢ {X = 2} X:=X+1 {X = 3}
⊢ {X = 1}  X:=X+1; X:=X+1  {X = 3}
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FHL rules: sequential 
composition example 

Assume we have given tripples 1-3:
1. ⊢ {X = x ∧ Y = y} R := X {R = x ∧ Y = y}  
2. ⊢ {R = x ∧ Y = y} X := Y {R = x ∧ X = y}  
3. ⊢ {R = x ∧ X = y} Y := R {Y = x ∧ X = y}

by sequential coposition rule (1.) and (2.) provide
4. ⊢ {X = x ∧ Y = y} R:= X; X:= Y {R= x ∧ X = y}

and (4.), (3.) yield
5. ⊢ {X = x ∧ Y = y} R:= X ; X:= Y ; Y:= R {Y = x ∧ X = y}
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FHL rules: SKIP-axiom

 Syntax: 
⊢ {P} SKIP {P}

 Semantics: 
 Program state does not change when skip is executed

 Explanation:
 This is axiom scheme where P may be any assertion

 Examples of concrete SKIP-axioms:
 ⊢ {Y = 2} SKIP {Y = 2}
 ⊢ { T } SKIP { T }
 ⊢ {Y = K × X + R} SKIP {Y = K × X + R}
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FHL rules: assignment
 Syntax:  V:=E

 Semantics: 
The state is changed by assigning the value of the term E to the 

variable V. All other variables preserve their values
 Example: Y:=Y+5

This adds 5 to the value of the variable Y.

 Variable substitution:
 P[E/V] denotes the result of replacing all occurrences of V in P by E.

 Example: (X + 1 > X) [Y + Z / X]  =  ((Y + Z) + 1 > Y + Z)

 Following property holds: V[E/V] = E
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FHL: assignment axiom:
⊢ {P[E/V]} V:=E {P}

where
 V is variable, E is an expression, P is any statement
 P[E/V] – denotes the result of substituting the term E for all 

occurrences of the variable V in statement P.

 Explanation:
 the value of a variable V after executiong an assignment V:=E 
 equals the value of the expression E in the state before 

executing it.

 Example:
 ⊢ {Y = 2} X:=2 {Y = X}
 ⊢ {Z =  XY } X:=X**Y {Z = X}

J.Vain 21.03.2018 12



FHL rules: precondition 
strenghtening

⊢ P ⇒ P' ⊢ {P'} C {Q}
⊢ {P} C {Q}

 Application example_
From implication ⊢ X = n ⇒ X + 1 = n + 1    
and 
assignment axiom ⊢ {X + 1 = n + 1} X := X + 1 {X = n + 1}
we can deduce

⊢ {X = n} X := X + 1 {X = n + 1}, 

where n is auxilliary variable that occurs only in pre-and post-
conditions .
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FHL rules: postcondition weakening

⊢ {P} C {Q'} ⊢Q' ⇒ Q
⊢ {P} C {Q}

 Example (application of rules in forward reasoning):

Proof step Used inference rule 

1. ⊢ {R = X ∧ 0=0} Q:= 0 {R=X ∧ Q=0} (assignment axiom)
2. ⊢ R = X ⇒ R = X ∧ 0 = 0  (logic equality
3. ⊢ {R = X} Q := 0 {R = X ∧ Q = 0} (precondition strengthening)
4. ⊢ R = X ∧ Q = 0 ⇒ R = X + (Y × Q) (arithmetic equality)
5. ⊢{R = X} Q := 0 {R = X + (Y × Q)} (postcondition weakening)
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FHL rules: BEGIN-END -blocks 

 Syntax: 
BEGIN VAR V1; … ;Vn ; C END

 Semantics: 
 Variables V1; … ;Vn  are used locally within the block. After C 

is executed the values of V1; … ;Vn are restored to the values 
they had befor the block was entered

 The initial values for V1; … ;Vn  in the block are unspecified.

 Example:
BEGIN  VAR R; R := X; X:=Y; Y:=R END

 Variables X and Y exchange their values by using an auxiliary 
variable R.
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Block-rule:

⊢ {P} C {Q}
⊢ {P} BEGIN VAR V1; … ;Vn ; C END {Q}

where none of the variables V1; … ;Vn occur in P or Q.

Explanation: 
This restriction of variable occurrence in P and Q is because their 
value is determined locally only within the block. Their valuation 
outside the block may be different.

FHL rules: BEGIN-END -blocks 
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FHL rules: IF- command

 Syntax:
{P}  IF S THEN C1  ELSE C2 {Q}

 Semantics:
 If the statement S is true (in current state), then C1 is 

executed
 If S is false then C2 is executed

 Example:   
 IF X < Y  THEN  MAX:= Y  ELSE MAX:= X
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FHL rules: IF- command
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 IF - rule1 (one branch):
⊢ {P ∧ S} C {Q} ⊢ P ∧¬ S ⇒ Q

⊢ {P}  IF S THEN  C {Q}

 IF- rule 2 (two branches):
⊢ {P ∧ S} C1 {Q}, ⊢ {P ∧¬ S} C2 {Q}
⊢ {P}  IF S THEN  C1 ELSE C2 {Q}



FHL rules: application example of 
IF- command

 Example:
Given
 ⊢ {T ∧ X >= Y} MAX := X {MAX = max(X, Y)}

 ⊢ {T ∧ ¬(X >= Y)} MAX := Y {MAX = max(X, Y)}

By IF-rule 2 it follows:
 ⊢ {T} IF X>=Y THEN MAX:=X ELSE  MAX:=Y {MAX= max( X, Y)}

J.Vain 21.03.2018 19



FHL rules: WHILE-command
 Syntax:  WHILE S DO  C

 Semantics:
 If the statement S is true in the current state, then C is executed 

and the WHILE command is repeated.
 If S is false, then exit the command,
 Command C is repeatedly executed until the value of S becomes 

false 
 If S never becomes false, then the execution never terminates

 Example:
WHILE ¬(X = 0) DO  X := X – 2

For which values of X the command does not terminate?
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FHL rules: WHILE-command

 Invariants
Suppose

⊢ {P ∧ S} C {P}

then P is an invariant of C whenever S holds.

 Explanation (WHILE-rule):
 if the execution of WHILE-command body C preserves truth value 

of P once, then it preserves this truth value for arbitrary number 
of executions of C.

 If WHILE-command has terminated, then loop condition S must 
be false (because this is WHILE termination condition).
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FHL rules: WHILE-command

 (Simple) WHILE–rule:

⊢ {P ∧ S} C {P}

⊢ {P}  WHILE S DO C {P ∧¬ S }

 Extended WHILE-rule:

⊢ P ⇒ R ⊢ {R ∧ S} C {R} ⊢ R ∧ ¬S ⇒ Q

⊢ {P} WHILE S DO C {Q}
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WHILE-command: invariant
How to find an invariant?

 It must hold initially when entering the loop
 With negated test it must establish the result of loop
 The body must leave it unchanged

 Intuition: 
 The invariant says that what has been done so far together with 

what remains to be done gives the desired result.

 Analogy with milestone where one face indicates the distance 
passed and the other the distance to go, their sum is the total 
distance between the departure point and destination.
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WHILE-command: example 1

 Example (factorial program 1):

{X = n ∧ Y = 1}
WHILE X≠0 DO
BEGIN Y:=Y×X; X:=X-1  END

{X = 0 ∧ Y = n!}

 Analyze the variable values
 Finally X = 0 and Y = n!
 Initially X = n and Y = 1
 On each loop Y is increased and X is decreased.
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WHILE-command: example 1

 How the variables keep their values in execution? 
 Y holds the result so far
 X! is what remains to be computed
 n! is the desired result

 The invariant is X! ×Y = n!
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WHILE-command: example 2

 Example (factorial program 2):

{X = n ∧ Y = 1}
WHILE X<N DO

BEGIN X:=X+1; Y:=Y×X; END
{Y = N!}

 Analyze the variable values
 Finally X = N and Y = N!
 Initially X = 0 and Y = 1
 On each loop both X and Y increase.
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WHILE-command: example 2

 How the values of variables evolve in execution? 
 At end Y = N!
 and ¬(X<N) ⇒ X=N
 The invariant must be

Y = X! ∧ X ≤ N 
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FHL rules: conjunction and 
disjunction of specifications
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⊢ {P1} C {Q1} ⊢ {P2} C {Q2}
⊢ {P1 ∧ P2} C {Q1 ∧ Q2}

⊢ {P1} C {Q1} ⊢ {P2} C {Q2}
⊢ {P1 ∨ P2} C {Q1 ∨ Q2}

 These rules allow splitting large triples into simpler ones and prove 
them separately. To prove 

⊢ {P1 ∧ P2} C {Q1 ∧ Q2}.

 it sufices proving independently
⊢ {P1} C {Q1}    and      ⊢ {P2} C {Q2}



FHL rules: FOR-command
 Syntax:

FOR V := E1 UNTIL  E2  DO C
 Restriction: index variable V must not occur in E1 or E2 or be the left 

hand side of an assignment in C.

 Semantics:
 If the values of terms E1 and E2 are positive numbers e1 and e2, 

where e1 ≤ e2, then C is executed (e2 – e1) + 1 times
 with the variable V taking values e1,  e1+1, e1+2, … ,  e2.
 for any other value of V the FOR-command acts as skip.

 Example:
FOR  N:=1 UNTIL  M  DO X:=X+N

 expressions E1 and E2 are evaluated only once at the entry to 
FOR-command;

 if E1 and E2 do not have positive integer value or E1>E2, then 
FOR-command does nothing.
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Reduction to WHILE-command
 FOR-command 

FOR V:=E1 UNTIL E2 DO C
is equivalent to WHILE-program

BEGIN VAR V;
V:=E1;
WHILE V≥E1 ∧ V≤E2 DO
BEGIN 
C;
V:=V+1

END
END
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Annotating the FOR-command
 Having an annotated FOR-command

{P} FOR V:= E1 UNTIL E2 DO {R} C {Q}
 we can transform it to equivalent annotated WHILE program
 Invariant R of this WHILE program must include condition V ≤ E2+1 

{P}
BEGIN VAR V;

V:= E1;
WHILE V≥E1 ∧ V≤E2 DO {R} BEGIN

C;
V:=V+1

END
END
{Q}
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FHL rules: FOR-command
 FOR–axiom:

⊢ {R ∧ (E2 < E1)} FOR V:=E1 UNTIL  E2 DO C {R}

 (Primary) FOR–rule:
⊢ {R ∧ (E1 ≤ V) ∧ (V ≤ E2)} C {R[V + 1/V]}

⊢{R[E1/V]} ∧ (E1≤E2)} FOR V:=E1 UNTIL E2 DO C {R[E2+1/V]},

 Extended  FOR–rule:

⊢ P ⇒ R[E1/V] ⊢ R[E2+1/V] ⇒ Q ⊢ P ∧ (E2 < E1) ⇒ Q  
⊢ {R ∧ (E1 ≤ V) ∧ (V ≤ E2)} C {R[V+1/V]}

⊢ {P} FOR V:=E1 UNTIL E2 DO {R} C {Q}
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Summary
 The proof system must be sound and complete,
 i.e. it is necessary to show that axioms are valid and inference rules 

imply true conclusions if their hypothesis are true.
 The calculus is complete if all its valid assertions are provable.
 FHL is relative complete if for all programs of the FHL triples 

expressible in it can be transformed to programming construct free 
logic formuli.

 Ed. Clarke proved that for languages that include recursion, static 
scoping, global variables and parametrized procedure calls, there 
does not exist sound and complete FHL.
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