Advanced Algorithms and Data Structures

Spring 2017
Wolfgang Jeltsch Tiina Zingel

Homework 3

Task 1 (Implementation of the Karatsuba algorithm)
 7 points

The course website contains Ada code for natural number multiplication. Please note the following about this code:

- Natural numbers are represented as arrays of binary digits. The first element in such an array represents the digit with weight 1 , the next the digit with weight 2 , the next the digit with weight 4 , and so on.
- The package ITI8590.Natural_Number_Multiplication contains a procedure Standard, which implements the multiplication algorithm taught in elementary school.
- The package ITI8590.Natural_Number_Multiplication also contains a private procedure Add_To. This procedure takes two parameters that represent natural numbers. It adds the second number to the first, thus modifying it. Note that the first parameter can be an array slice, which makes it possible to effectively shift a number to the left before adding it to another number. This feature is used in the implementation of the Standard procedure.
- If the Value parameter of Add_To or the Product parameter of Standard is not large enough to hold the result, an exception is raised (this is caused by an out-of-bounds array access).
- The Put procedure for natural numbers, which is defined in the IO subpackage, outputs digits in the usual order: the most significant digit first and the least significant digit last.

Extend the package ITI8590.Natural_Number_Multiplication with a procedure Karatsuba that implements the Karatsuba algorithm. The interface of this procedure shall be the same as the interface of the Standard procedure. Like the Standard procedure, the Karatsuba procedure shall impose no constraints on the sizes of its parameter arrays.

Task 2 (Solving of recurrence equations)

6 points
State for each of the following recurrence equations whether it can be solved by the master theorem, and if it can, give the solution:

1. $T_{1}(n)=9 T_{1}(n / 3)+4 n^{2}$
2. $T_{2}(n)=3 T_{2}(n / 2)+\Theta(n)$
3. $T_{3}(n)=T_{3}(n / 2)+\Theta(1)$
4. $T_{4}(n)=T_{4}(n)+\Theta(1)$
5. $T_{5}(n)=4 T_{5}(n / 2)+o\left(n^{2}\right)$
6. $T_{6}(n)=2 T_{6}(n / 2)+n \sqrt{n}$
