## Formal methods

Proof techniques

## Introduction

- We have given:
- a notation for specifying what a program does
- a way of proving that it meets its specification
- We will now look at ways of organising proofs to make them easier:
- Derived rules
- Backwards proofs
- Annotating programs prior to proof


## Combining multiple steps

- Proofs involve lots of tedious fiddly small steps
- Similar sequences are used over and over again
- It is tempting to take short cuts and apply several rules at once
- This increases the chance of making mistakes


## Combining multiple steps

- Example:
- By assignment axiom \& precondition strengthening
- $\vdash\{\mathrm{T}\} \mathrm{R}:=\mathrm{X} \quad\{\mathrm{R}=\mathrm{X}\}$
- Rather than:
- By the assignment axiom

$$
\vdash\{P[E / V]\} V:=E\{P\}
$$

- $\vdash\{\mathrm{x}=\mathrm{x}\} \mathrm{R}:=\mathrm{x}\{\mathrm{R}=\mathrm{x}\}$
- By precondition strengthening with $\vdash \mathrm{T} \Rightarrow \mathrm{X}=\mathrm{X}$
- $\vdash\{\mathrm{T}\} \mathrm{R}:=\mathrm{X}\{\mathrm{R}=\mathrm{X}\}$

$$
\begin{array}{cc}
\vdash \vdash P \Rightarrow P^{\prime}, \quad \vdash\left\{P^{\prime}\right\} C\{Q\} \\
\hline & \vdash\{P\} C\{Q\} \\
\hline
\end{array}
$$

## Alternative rule for Assignment

- Rather than having the assignment axiom, we could have defined assignment by the following assignment rule

$$
\frac{\vdash P \Rightarrow Q[E / V]}{\vdash\{P\} V:=E\{Q\}}
$$

- If we have both rules, they may be inconsistent
- The more complex the rule, the more likely we are to make a mistake formulating it
- We may not be able to prove everything we could with the smaller step rules


## Solution

- We have a small set of simple primitive rules
- We derive the other (possibly more complex) rules from the primitives
- We do the proof just once to derive the rule
- Rules for new commands defined in terms of existing commands can be built in a similar way
- Core set of commands; the rest built on top


## Derived Assignment Rule

Derived Assignment Rule

$$
\frac{\vdash P \Rightarrow Q[E / V]}{\vdash\{P\} V:=E\{Q\}}
$$

- Derivation tree

$$
\frac{\vdash P \Rightarrow Q[E / V] \frac{\vdash\{Q[E / V]\} V:=E\{Q\}}{\vdash\{P\} V:=E\{Q\}}}{\vdash \text { ASS }}
$$

## Rules of Consequence

- As in the assignment example, the desired precondition and postcondition are rarely in the form required by the primitive rules
- Ideally, for each command we want a rule of the form

$$
\digamma\{P\} C\{Q\}
$$

where $P$ and $Q$ are distinct meta-variables.

- Some of the rules are already in this form eg the sequencing rule
We can derive rules of this form for the other commands using the rules of consequence


## Derived Skip Rule

## Derived Skip Rule

$$
\frac{\vdash P \Rightarrow Q}{\vdash\{P\} \operatorname{SKIP}\{Q\}}
$$

- Derivation Tree

$$
\frac{\vdash P \Rightarrow Q \overline{\vdash\{Q\} \operatorname{SKIP}\{Q\}} S K P}{\vdash\{P\} \operatorname{SKIP}\{Q\}} P R E
$$

## Derived While Rule

$$
\frac{\vdash P \Rightarrow R \vdash\{R \wedge S\} \mathrm{C}\{R\} \vdash R \wedge \neg S \Rightarrow Q}{\vdash\{P\} \text { WHILE S DO C }\{Q\}}
$$

- If it is possible to show that

$$
\vdash \quad \mathrm{R}=\mathrm{X} \wedge \mathrm{Q}=0 \Rightarrow \mathrm{X}=\mathrm{R}+(\mathrm{Y} \times \mathrm{Q})
$$

$$
\vdash\{\mathrm{X}=\mathrm{R}+(\mathrm{Y} \times \mathrm{Q}) \wedge \mathrm{Y} \leq \mathrm{R}\} \quad \mathrm{R}:=\mathrm{R}-\mathrm{Y} ; \mathrm{Q}:=\mathrm{Q}+1 \quad\{\mathrm{X}=\mathrm{R}+(\mathrm{Y} \times \mathrm{Q})\}
$$

$$
\vdash \mathrm{X}=\mathrm{R}+(\mathrm{Y} \times \mathrm{Q}) \wedge \neg(\mathrm{Y} \leq \mathrm{R}) \Rightarrow \mathrm{X}=\mathrm{R}+(\mathrm{Y} \times \mathrm{Q}) \wedge \neg(\mathrm{Y} \leq \mathrm{R})
$$

- Then by the derived While rule

$$
\begin{aligned}
& \vdash\{\mathrm{R}=\mathrm{X} \wedge \mathrm{Q}=0\} \\
& \text { WHILE } \mathrm{Y} \leq \mathrm{R} \text { DO } \\
& \quad(\mathrm{R}:=\mathrm{R}-\mathrm{Y} ; \mathrm{Q}:=\mathrm{Q}+1) \\
& \{\mathrm{X}=\mathrm{R}+(\mathrm{Y} \times \mathrm{Q}) \wedge \neg(\mathrm{Y} \leq \mathrm{R})\}
\end{aligned}
$$

## Derived Sequencing Rule

$$
\begin{array}{lll} 
& & \vdash P \Rightarrow P_{1} \\
\vdash\left\{P_{1}\right\} C_{1}\left\{Q_{1}\right\} & \vdash Q_{1} \Rightarrow P_{2} \\
\vdash & \left.\vdash P_{2}\right\} C_{2}\left\{Q_{2}\right\} & \vdash Q_{2} \Rightarrow P_{3} \\
\cdot & & \cdot \\
\cdot & \cdot \\
\cdot & \\
\vdash\left\{P_{n}\right\} C_{n}\left\{Q_{n}\right\} & \vdash Q_{n} \Rightarrow Q \\
\hline & \vdash\{P\} C_{1} ; \ldots ; C_{n}\{Q\}
\end{array}
$$

- Example

$$
\vdash\{\mathrm{X}=\mathrm{x} \wedge \mathrm{Y}=\mathrm{y}\} \quad \mathrm{R}:=\mathrm{X} \quad\{\mathrm{R}=\mathrm{x} \wedge \mathrm{Y}=\mathrm{y}\}
$$

$$
\vdash\{\mathrm{R}=\mathrm{x} \wedge \mathrm{Y}=\mathrm{y}\} \quad \mathrm{X}:=\mathrm{Y} \quad\{\mathrm{R}=\mathrm{x} \wedge \mathrm{X}=\mathrm{y}\}
$$

$$
\vdash\{\mathrm{R}=\mathrm{x} \wedge \mathrm{X}=\mathrm{y}\} \quad \mathrm{Y}:=\mathrm{R} \quad\{\mathrm{Y}=\mathrm{x} \wedge \mathrm{X}=\mathrm{y}\}
$$

$$
\vdash\{\mathrm{X}=\mathrm{x} \wedge \mathrm{Y}=\mathrm{y}\} \mathrm{R}:=\mathrm{X} ; \mathrm{X}:=\mathrm{Y} ; \mathrm{Y}:=\mathrm{R}\{\mathrm{Y}=\mathrm{x} \wedge \mathrm{X}=\mathrm{y}\}
$$

## Derived Block Rule

$$
\begin{aligned}
& \\
& \vdash\left\{P_{1}\right\} C_{1}\left\{Q_{1}\right\} \vdash Q_{1} \Rightarrow P_{2} \\
& \vdash\left\{P_{2}\right\} C_{2}\left\{Q_{2}\right\} \vdash Q_{2} \Rightarrow P_{3} \\
& \cdot \\
& \cdot \cdot \\
& \cdot \\
& \vdash\left\{P_{n}\right\} C_{n}\left\{Q_{n}\right\} \\
& \vdash Q_{n} \Rightarrow Q \\
& \vdash\{P\} \text { BEGIN } \operatorname{VAR} V_{1} ; \ldots \text { VAR } V_{m} ; C_{1} ; \ldots ; C_{n}\{Q\}
\end{aligned}
$$

where none of the variables $V_{1}, \ldots, V_{m}$ occur in $P$ or $Q$.

## Derived Sequenced Assignment Rule

$$
\frac{\vdash\{P\} C\{Q[E / V]\}}{\vdash\{P\} C ; V:=E\{Q\}}
$$

- Derivation tree

$$
\frac{\vdash\{P\} C\{Q[E / V]\} \quad \stackrel{\vdash Q[E / V]\} V:=E\{Q\}}{\vdash\{P\} C ; V:=E\{Q\}} \text { ASS }}{\vdash\{E Q}
$$

- Example: from

$$
\vdash\{\mathrm{X}=\mathrm{x} \wedge \mathrm{Y}=\mathrm{y}\} \quad \mathrm{R}:=\mathrm{X} \quad\{\mathrm{R}=\mathrm{x} \wedge \mathrm{Y}=\mathrm{y}\}
$$

by the sequenced assignment rule

$$
\vdash\{\mathrm{X}=\mathrm{x} \wedge \mathrm{Y}=\mathrm{y}\} \quad \mathrm{R}:=\mathrm{x} ; \mathrm{X}:=\mathrm{Y} \quad\{\mathrm{R}=\mathrm{x} \wedge \mathrm{X}=\mathrm{y}\}
$$

## Reviev of proving

- Previously it was shown how to prove $\{P\} C\{Q\}$ by
- proving properties of the components of $C$
- and then putting these together, with the appropriate proof rule, to get the desired property of $C$
- For example, to prove $\vdash\{P\} C_{1} ; C_{2}\{Q\}$
- First prove $\vdash\{P\} C_{1}\{R\}$ and $\vdash\{R\} C_{2}\{Q\}$
- then deduce $\vdash\{P\} C_{1} ; C_{2}\{Q\}$ by sequencing rule


## Forward and Backward Proof

- This method is called forward proof
- Move forward from axioms via rules to conclusion
- The problem with forwards proof is that it is not always easy to see what you need to prove to get where you want to be
- It is more natural to work backwards
- Starting from the goal of showing $\{P\} C\{Q\}$
- Generate subgoals until problem solved


## Backward versus Forward Proof

- Backwards proof just involves using the rules backwards
- Given the rule

- Forwards proof says:
- If we have proved $\vdash S_{1}$ we can deduce $\vdash S_{2}$
- Backwards proof says:
- To prove $\vdash S_{2}$ it is sufficient to prove $\vdash S_{1}$


## Example Backwards Proof

- To prove $\vdash\{\mathrm{T}\}$
R:=X;
Q:=0;

WHILE $\mathrm{Y} \leq \mathrm{R}$ DO
BEGIN R:=R-Y; Q:=Q+1 END $\{\mathrm{X}=\mathrm{R}+(\mathrm{Y} \times \mathrm{Q}) \wedge \mathrm{R}<\mathrm{Y}\}$

- By the sequencing rule, it is sufficient to prove
(i) $\vdash\{\mathrm{T}\} \mathrm{R}:=\mathrm{X} ; \mathrm{Q}:=0\{\mathrm{R}=\mathrm{X} \wedge \mathrm{Q}=0\}$
$\vdash\{\mathrm{R}=\mathrm{X} \wedge \mathrm{Q}=0\}$
(ii)

$$
\text { WHILE } \mathrm{Y} \leq \mathrm{R} \text { DO }
$$

BEGIN R:=R-Y; Q:=Q+1 END

$$
\{\mathrm{X}=\mathrm{R}+(\mathrm{Y} \times \mathrm{Q}) \wedge \mathrm{R}<\mathrm{Y}\}
$$

## Example Backwards Proof

(i) $\vdash\{\mathrm{T}\} \mathrm{R}:=\mathrm{X} ; \mathrm{Q}:=0\{\mathrm{R}=\mathrm{X} \wedge \mathrm{Q}=0\}$

- To prove (i), by the sequenced assignment axiom, we must prove:
(iii) $\vdash\{\mathrm{T}\} \mathrm{R}:=\mathrm{X}\{\mathrm{R}=\mathrm{X} \wedge 0=0\}$
- To prove (iii), by the derived assignment rule, we must prove:

$$
\vdash \mathrm{T} \Rightarrow \mathrm{X}=\mathrm{X} \wedge 0=0
$$

- This is true by pure logic.


## Example Backwards Proof

(ii)

$$
\vdash\{\mathrm{R}=\mathrm{X} \wedge \mathrm{Q}=0\}
$$

$$
\text { WHILE } \mathrm{Y} \leq \mathrm{R} \text { DO }
$$

$$
\frac{\vdash P \Rightarrow R \vdash\{R \wedge S\} \mathrm{C}\{R\} \vdash R \wedge \neg S \Rightarrow Q}{\vdash\{P\} \text { whILE S DO C }\{Q\}}
$$

BEGIN R:=R-Y; Q:=Q+1 END

$$
\{\mathrm{X}=\mathrm{R}+(\mathrm{Y} \times \mathrm{Q}) \wedge \mathrm{R}<\mathrm{Y}\}
$$

- To prove (ii), by the derived while rule, we must prove:
(iv) $\mathrm{R}=\mathrm{X} \wedge \mathrm{Q}=0 \Rightarrow(\mathrm{X}=\mathrm{R}+(\mathrm{Y} \times \mathrm{Q}))$
(v) $X=R+Y \times Q \wedge \neg(Y \leq R) \Rightarrow(X=R+(Y \times Q) \wedge R<Y)$

$$
\{\mathrm{X}=\mathrm{R}+(\mathrm{Y} \times \mathrm{Q}) \wedge(\mathrm{Y} \leq \mathrm{R})\}
$$

(vi) BEGIN R:=R-Y; Q:=Q+1 END

$$
\{\mathrm{X}=\mathrm{R}+(\mathrm{Y} \times \mathrm{Q})\}
$$

## Example Backwards Proof

- To prove (vi), by the block rule, we must prove

$$
\text { (vii) } \begin{aligned}
& \{X=R+(Y \times Q) \wedge(Y \leq R)\} \\
& \\
& \quad R:=R-Y ; Q:=Q+1 \\
& \{X=R+(Y \times Q)\}
\end{aligned}
$$

- To prove (vii), by the sequenced assignment rule, we must prove

$$
\frac{\vdash\{P\} C\{Q[E / V]\}}{\vdash\{P\} C ; V:=E\{Q\}}
$$

$$
\{\mathrm{X}=\mathrm{R}+(\mathrm{Y} \times \mathrm{Q}) \wedge(\mathrm{Y} \leq \mathrm{R})\}
$$

(viii) $\quad R:=R-Y$

$$
\{\mathrm{X}=\mathrm{R}+(\mathrm{Y} \times(\mathrm{Q}+1))\}
$$

## Example Backwards Proof

$$
\text { (viii) } \begin{aligned}
& \{\mathrm{X}=\mathrm{R}+(\mathrm{Y} \times \mathrm{Q}) \wedge(\mathrm{Y} \leq \mathrm{R})\} \\
& \mathrm{R}:=\mathrm{R}-\mathrm{Y} \\
& \{\mathrm{X}=\mathrm{R}+(\mathrm{Y} \times(\mathrm{Q}+1))\}
\end{aligned}
$$

- To prove (viii), by the derived assignment rule, we must prove

$$
\text { (ix) } \mathrm{X}=\mathrm{R}+(\mathrm{Y} \times \mathrm{Q}) \wedge \mathrm{Y} \leq \mathrm{R} \Rightarrow(\mathrm{X}=(\mathrm{R}-\mathrm{Y})+(\mathrm{Y} \times(\mathrm{Q}+1)))
$$

- This is true by arithmetic


## Annotations

- The sequencing rule introduces a new statement $R$

$$
\frac{\vdash\{P\} C_{1}\{R\}, \quad \vdash\{R\} C_{2}\{Q\}}{\vdash\{P\} C_{1} ; C_{2}\{Q\}}
$$

- To apply this rule, you must come up with a suitable statement for $R$
- If the second command is an assignment, the sequenced assignment rule can be used
- It then effectively fills in the value


## Annotate First

- It is helpful to think up these statements, before you start the proof and annotate the program with them
- The information is then available when you need it in the proof
- This can help avoid you being bogged down in details
- The annotation should be true whenever control reaches that point


## Annotation example

- Example, the following program could be annotated at the points indicated.
\{T\}
BEGIN

$$
\begin{aligned}
& \mathrm{R}:=\mathrm{X} ; \\
& \mathrm{Q}:=0 ;\{\mathrm{R}=\mathrm{X} \wedge \mathrm{Q}=0\} \longleftarrow \mathrm{P}_{1} \\
& \text { WHILE Y } \leq \mathrm{R} \text { DO }\{\mathrm{X}=\mathrm{R}+\mathrm{Y} \times \mathrm{Q}\} \longleftarrow \mathrm{P}_{2} \\
& \quad \text { BEGIN R }:=\mathrm{R}-\mathrm{Y} ; \mathrm{Q}:=\mathrm{Q}+1 \text { END }
\end{aligned}
$$

END

$$
\{X=R+Y \times Q \wedge R<Y\}
$$

## Summary

- We have looked at three ways of organizing proofs that make it easier for humans to apply them:
- deriving "bigger step" rules
- backwards proof
- annotating programs


## Home Assignment

Prove that the command
BEGIN
Z:=0;
WHILE $\neg(X=0)$ DO BEGIN
IF ODD (X) THEN Z:=Z+Y ELSE SKIP;
Y:=Y*2; X:=X/2;
END

## END

computes the product of the initial values of $X$ and Y and leaves the result in Z .

