Support Vector Machines

Kairit Sirts

02.05.2014

Kairit Sirts ()

(日) (四) (三) (三) (三)

02.05.2014

Keywords

- Functional and geometrical margins
- Maximal margin classifier
- Soft margin classifier
- Support vectors

<ロ> (日) (日) (日) (日) (日)

Perceptron algorithm

1:
$$w_d \leftarrow 0$$
, for all $d = 1 \dots D$
2: $b \leftarrow 0$
3: for $iter = 1 \dots MaxIter$ do
4: for all $(\mathbf{x}, y) \in \mathbf{D}$ do
5: $a \leftarrow \sum_{d=1}^{D} w_d x_d + b$
6: if $ya \leq 0$ then
7: $w_d \leftarrow w_d + yx_d$, for all $d = 1 \dots D$
8: $b \leftarrow b + y$
9: end if
10: end for
11: end for

12: return $w_1, ..., w_D, b$

Kairit Sirts ()

02.05.2014

Perceptron properties

- Error-driven algorithm
- Learns a linear decision boundary
- Is guaranteed to find the solution with linearly separable data only
- Model and algorithm are together

(日) (同) (日) (日) (日)

Neural Networks

- Enable to learn non-linear decision boundaries
- Two-layer NN can be used to approximate any function (George Cybenko)
- Many hyperparameters (topology of the network, activation function)
- Non-convex optimization task (sensitive to initialization)

(日) (同) (日) (日) (日)

02.05.2014

Support Vector Machines

Support vector machines have several nice features:

- Convex optimization task (only one optimum)
- Proven generalization bounds
- Resistant to overfitting
 - The number of features can be bigger than the number of training examples
- Enables to learn non-linear decision boundaries with linear model

(日) (同) (日) (日) (日)

Notation

 $\mathbf{X} \in \mathbb{R}^{m \times n}$ $\mathbf{y} \in \{-1, +1\}^m$ $\mathbf{w} \in \mathbb{R}^n$ $b \in \mathbb{R}$ $h_{\mathbf{w}, b}(\mathbf{x}) = g(\mathbf{w}^T \mathbf{x} + b)$ g(z) = 1g(z) = -1

matrix of inputs (design matrix) vector of labels for each input vector of weights bias term hypothesis if $z \ge 0$ otherwise

イロト 不得下 イヨト イヨト 二日

02.05.2014

Functional margin

- Assume we have linearly separable data
- ▶ Functional margin of an example (**x**_i, y_i) with respect to a hyperplane (**w**, b) is defined as:

$$\hat{\gamma}_i = y_i(\mathbf{w}^T \mathbf{x}_i + b)$$

 $\hat{\gamma}_i$ is positive if y_i and $\mathbf{w}^T \mathbf{x}_i + b$ have the same sign

- Thus, $\hat{\gamma}_i > 0$ implies correct classification of (\mathbf{x}_i, y_i)
- The larger the functional margin the more confident the prediction

(日) (同) (日) (日) (日)

Functional margin

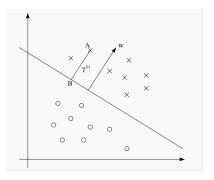
The function margin of the hyperplane (w, b) with respect to some training set is the smallest functional margin of the individual training examples:

 $\hat{\gamma} = \min_{i=1,\dots,m} \hat{\gamma}_i$

- Functional margin is not a very good measure for confidence, because:
 - Both h and g depend only on the sign of $\mathbf{w}^T \mathbf{x} + b$
 - Rescaling w and b does not change their values
 - Thus the functional margin could be made arbitrarily large

Geometric margin

Geometric margin of an example (\mathbf{x}_i, y_i) with respect to a hyperplane (\mathbf{w}, b) is the Euclidean distance between the point \mathbf{x}_i and the hyperplane:



- w is perpendicular to the hyperplane
- γ_i is the length of the segment AB
- $\blacktriangleright \ \mathbf{w} / \| \mathbf{w} \|$ is a unit vector
- A is some point \mathbf{x}_i

$$\bullet B = \mathbf{x}_i - \gamma_i \cdot \mathbf{w} / \|\mathbf{w}\|$$

Geometric margin

Point B lies on the separating hyperplane and for all points lying there:

$$\mathbf{w}^T \mathbf{x} + b = 0$$

Therefore:

$$\mathbf{w}^T \left(\mathbf{x}_i - \gamma_i \frac{\mathbf{w}}{\|\mathbf{w}\|} \right) + b = 0$$

▶ Solving for γ_i yields:

$$\gamma_i = \left(\frac{\mathbf{w}}{\|\mathbf{w}\|}\right)^T \mathbf{x}_i + \frac{b}{\|\mathbf{w}\|}$$

Kairit Sirts ()

02.05.2014 11 / 22

イロト 不得下 イヨト イヨト 二日

Geometric margin

For both positive and negative training examples the geometric margin is:

$$\gamma_i = y_i \left(\left(\frac{\mathbf{w}}{\|\mathbf{w}\|} \right)^T \mathbf{x}_i + \frac{b}{\|\mathbf{w}\|} \right)$$

- ► If ||w|| is one then the geometric margin and functional margin are equal
- Geometric margin is invariant to the rescaling of the parameters
- Geometric margin of a hyperplane (w, b) with respect to a training set is the minimum geometric margin of the training examples:

$$\gamma = \min_{i=1,\dots,m} \gamma_i$$

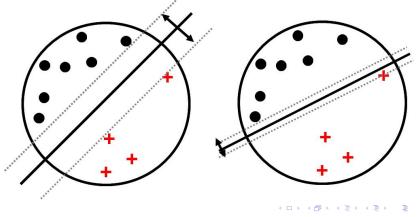
Kairit Sirts ()

02.05.2014 12 / 22

イロト 不得 トイヨト イヨト 二日

Maximal margin

- Margin of a training set is the maximum geometric margin over all separating hyperplanes.
- The hyperplane realising the maximum is called maximal margin hyperplane.



Maximum margin classifier: hard margin SVM

- ▶ Idea: Find the optimal separating hyperplane by maximizing the geometric margin of the training set $\gamma(\mathbf{w}, b)$.
- ► For ensuring that the margin separates the data points, we also need the constraints imposed on functional margins
- \blacktriangleright We require functional and geometric margin to be equal, then the geometric margin for each point is at least γ
- This leads to the following optimization problem:

$$\begin{split} \max_{\mathbf{w}, b} \gamma \\ \text{s.t. } y_i(\mathbf{w}^T \mathbf{x}_i + b) \geq \gamma, \text{ for all } i \\ \|\mathbf{w}\| = 1 \end{split}$$

Kairit Sirts ()

02.05.2014 14 / 22

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Hard margin SVM

- The last constraint is non-convex
- ▶ We can remove it by changing the optimization problem:

$$\begin{split} & \max_{\mathbf{w}, b} \frac{\hat{\gamma}}{\|\mathbf{w}\|} \\ & \text{s.t. } y_i(\mathbf{w}^T \mathbf{x}_i + b) \geq \hat{\gamma}, \text{ for all } i \end{split}$$

- Recall that $\gamma = \hat{\gamma} / \| \mathbf{w} \|$
- The objective is still non-convex

イロト 不得 トイヨト イヨト 二日

02.05.2014

Hard margin SVM

- Recall that geometric margin is invariant to scaling
- ► We now introduce the scaling constraint that the functional margin of the hyperplane (w, b) with respect to the training set must be 1:

$$\hat{\gamma} = 1$$

We plug that in to the optimization problem and turn maximization into minimization:

$$\begin{split} \min_{\mathbf{w}, b} &\|\mathbf{w}\| \\ \text{s.t. } y_i(\mathbf{w}^T \mathbf{x}_i + b) \geq 1, \text{ for all } i \end{split}$$

イロト 不得下 イヨト イヨト 二日

02.05.2014

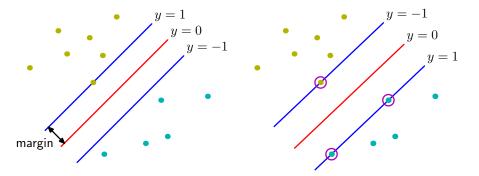
16 / 22

Thus we require all data points to be correctly classified and to have the functional margin at least 1.

Kairit Sirts ()

Support vectors

The points lying exactly on the maximal margin are support vectors



(日) (同) (日) (日) (日)

Soft margin SVM

- What if the data is not linearly separable?
- This means that some of the datapoints fail the margin (the functional margin is negative)
- The slack variables measure how much each of the points fails to meet the target of having a positive margin:

$$\xi_i = \max\left(0, \hat{\gamma} - y_i(\mathbf{w}^T \mathbf{x}_i + b)\right)$$

(日) (同) (日) (日) (日)

02.05.2014

Soft margin SVM

In addition to maximizing the margin we now also want to minimize the sum of the slack variables:

$$\min_{\mathbf{w},b,\xi} \|\mathbf{w}\| + C \sum_{i} \xi_i$$

The constrains now have to take the slack into account:

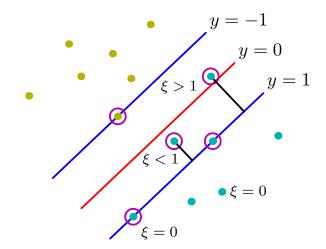
$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_i, \quad \text{for all } i$$

$$\xi_i \ge 0, \qquad \text{for all } i$$

イロト 不得下 イヨト イヨト 二日

02.05.2014

Soft margin SVM



Kairit Sirts ()

 ↓
 ∃

 </th

・ロト ・四ト ・ヨト ・ヨト

Objective function for both hard and soft margin

► For hard margin:

$$\begin{split} & \min_{\mathbf{w},b} \frac{1}{2} ||\mathbf{w}||^2 \\ & \text{subject to } y_i(\mathbf{w}^T \mathbf{x_i} + b) \geq 1, \text{ for all } i \end{split}$$

For soft margin:

$$\begin{split} \min_{\mathbf{w}, b, \xi} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_i \xi_i \\ y_i(\mathbf{w}^T \mathbf{x}_i + b) \geq 1 - \xi_i, \quad \text{ for all } i \\ \xi_i \geq 0, \quad \text{ for all } i \end{split}$$

These are convex quadratic optimization problems with linear constraints and can be solved by quadratic programming.

Kairit Sirts ()

< ロ > < 同 > < 回 > < 回 > < 回 > <

Multiclass SVM

- SVM is fundamentally a two-class classifier
- For building multiclass SVM-s there are several methods:
 - K one-versus-all SVM-s
 - ▶ all-versus-all approach K(K-1)/2 classifiers
 - Several more complicated problems
 - Still an open problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの