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Perceptron algorithm

1: wd ← 0, for all d = 1 . . . D
2: b← 0
3: for iter = 1 . . .MaxIter do
4: for all (x, y) ∈ D do
5: a←

∑D
d=1wdxd + b

6: if ya ≤ 0 then
7: wd ← wd + yxd, for all d = 1 . . . D
8: b← b+ y
9: end if

10: end for
11: end for
12: return w1, . . . , wD, b
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Perceptron properties

I Error-driven algorithm

I Learns a linear decision boundary

I Is guaranteed to find the solution with linearly separable data only

I Model and algorithm are together
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Neural Networks

I Enable to learn non-linear decision boundaries

I Two-layer NN can be used to approximate any function (George
Cybenko)

I Many hyperparameters (topology of the network, activation function)

I Non-convex optimization task (sensitive to initialization)
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Support Vector Machines

Support vector machines have several nice features:

I Convex optimization task (only one optimum)

I Proven generalization bounds
I Resistant to overfitting

I The number of features can be bigger than the number of training
examples

I Enables to learn non-linear decision boundaries with linear model
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Notation

X ∈ Rm×n matrix of inputs (design matrix)
y ∈ {−1,+1}m vector of labels for each input
w ∈ Rn vector of weights
b ∈ R bias term
hw,b(x) = g(wTx+ b) hypothesis
g(z) = 1 if z ≥ 0
g(z) = −1 otherwise

Kairit Sirts () SVM 02.05.2014 7 / 22



Functional margin

I Assume we have linearly separable data

I Functional margin of an example (xi, yi) with respect to a
hyperplane (w, b) is defined as:

γ̂i = yi(w
Txi + b)

γ̂i is positive if yi and wTxi + b have the same sign

I Thus, γ̂i > 0 implies correct classification of (xi, yi)

I The larger the functional margin the more confident the prediction
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Functional margin

I The function margin of the hyperplane (w, b) with respect to some
training set is the smallest functional margin of the individual training
examples:

γ̂ = min
i=1,...,m

γ̂i

I Functional margin is not a very good measure for confidence,
because:

I Both h and g depend only on the sign of wTx+ b
I Rescaling w and b does not change their values
I Thus the functional margin could be made arbitrarily large
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Geometric margin

Geometric margin of an example (xi, yi) with respect to a hyperplane
(w, b) is the Euclidean distance between the point xi and the hyperplane:

I w is perpendicular to the
hyperplane

I γi is the length of the segment
AB

I w/‖w‖ is a unit vector

I A is some point xi

I B = xi − γi ·w/‖w‖
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Geometric margin

I Point B lies on the separating hyperplane and for all points lying
there:

wTx+ b = 0

I Therefore:

wT

(
xi − γi

w

‖w‖

)
+ b = 0

I Solving for γi yields:

γi =

(
w

‖w‖

)T
xi +

b

‖w‖
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Geometric margin

I For both positive and negative training examples the geometric
margin is:

γi = yi

((
w

‖w‖

)T
xi +

b

‖w‖

)
I If ‖w‖ is one then the geometric margin and functional margin are

equal

I Geometric margin is invariant to the rescaling of the parameters

I Geometric margin of a hyperplane (w, b) with respect to a training
set is the minimum geometric margin of the training examples:

γ = min
i=1,...,m

γi

Kairit Sirts () SVM 02.05.2014 12 / 22



Maximal margin
I Margin of a training set is the maximum geometric margin over all

separating hyperplanes.
I The hyperplane realising the maximum is called maximal margin

hyperplane.
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Maximum margin classifier: hard margin SVM

I Idea: Find the optimal separating hyperplane by maximizing the
geometric margin of the training set γ(w, b).

I For ensuring that the margin separates the data points, we also need
the constraints imposed on functional margins

I We require functional and geometric margin to be equal, then the
geometric margin for each point is at least γ

I This leads to the following optimization problem:

max
w,b

γ

s.t. yi(w
Txi + b) ≥ γ, for all i

‖w‖ = 1
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Hard margin SVM

I The last constraint is non-convex

I We can remove it by changing the optimization problem:

max
w,b

γ̂

‖w‖
s.t. yi(w

Txi + b) ≥ γ̂, for all i

I Recall that γ = γ̂/‖w‖
I The objective is still non-convex
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Hard margin SVM

I Recall that geometric margin is invariant to scaling

I We now introduce the scaling constraint that the functional margin of
the hyperplane (w, b) with respect to the training set must be 1:

γ̂ = 1

I We plug that in to the optimization problem and turn maximization
into minimization:

min
w,b
‖w‖

s.t. yi(w
Txi + b) ≥ 1, for all i

I Thus we require all data points to be correctly classified and to have
the functional margin at least 1.
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Support vectors

The points lying exactly on the maximal margin are support vectors

y = 1
y = 0

y = −1

margin

y = 1

y = 0

y = −1
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Soft margin SVM

I What if the data is not linearly separable?

I This means that some of the datapoints fail the margin (the
functional margin is negative)

I The slack variables measure how much each of the points fails to
meet the target of having a positive margin:

ξi = max (0, γ̂ − yi(wTxi + b))
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Soft margin SVM

I In addition to maximizing the margin we now also want to minimize
the sum of the slack variables:

min
w,b,ξ
‖w‖+ C

∑
i

ξi

I The constrains now have to take the slack into account:

yi(w
Txi + b) ≥ 1− ξi, for all i

ξi ≥ 0, for all i

Kairit Sirts () SVM 02.05.2014 19 / 22



Soft margin SVM

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0
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Objective function for both hard and soft margin

I For hard margin:

min
w,b

1

2
||w||2

subject to yi(w
Txi + b) ≥ 1, for all i

I For soft margin:

min
w,b,ξ

1

2
||w||2 + C

∑
i

ξi

yi(w
Txi + b) ≥ 1− ξi, for all i

ξi ≥ 0, for all i

I These are convex quadratic optimization problems with linear
constraints and can be solved by quadratic programming.
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Multiclass SVM

I SVM is fundamentally a two-class classifier
I For building multiclass SVM-s there are several methods:

I K one-versus-all SVM-s
I all-versus-all approach - K(K − 1)/2 classifiers
I Several more complicated problems
I Still an open problem
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