Exercise 1. Let p, q, r, s, t, u be integers, where q, s, u are non-zero. A relation R is defined by

$$
\frac{p}{q} \sim \frac{r}{s} \Longleftrightarrow p s=q r .
$$

Show that R is an equivalence relation.
Solution. Clearly, \sim is reflexive, since

$$
\begin{aligned}
& \frac{p}{q} \sim \frac{p}{q} \Longleftrightarrow p q=p q \\
& \frac{q}{r} \sim \frac{q}{r} \Longleftrightarrow q r=q r
\end{aligned}
$$

\sim is symmetric, since

$$
\begin{gathered}
\frac{p}{q} \sim \frac{r}{s} \Longleftrightarrow \frac{r}{s} \sim \frac{p}{q} \\
p s=q r \Longleftrightarrow r q=p s .
\end{gathered}
$$

\sim is also transitive. To show this consider

$$
\frac{p}{q} \sim \frac{r}{s} \sim \frac{t}{u}
$$

Then $p s=q r$ and $r u=s t$. Therefore,

$$
\begin{aligned}
\frac{p s}{q} & =r=\frac{s t}{u} \\
\frac{p s}{q} & =\frac{s t}{u} \\
p s u & =s t q
\end{aligned}
$$

Since $s \neq 0$, we have $p u=q t$. Consequently, $\frac{p}{q} \sim \frac{t}{u}$. Two pairs of integers (p, q) and (r, s) are in the same equivalence class when they reduce to the same fraction in its lowest terms.

Exercise 2. For $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in \mathbb{R}^{2}, relation R is defined by

$$
\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{1}^{2}+y_{1}^{2}=x_{2}^{2}+y_{2}^{2} .
$$

Show that R is an equivalence relation.
Solution. Indeed, \sim is reflexive, since

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right) \sim\left(x_{1}, y_{1}\right) \Longleftrightarrow x_{1}^{2}+y_{1}^{2}=x_{1}^{2}+y_{1}^{2} \\
& \left(x_{2}, y_{2}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow x_{2}^{2}+y_{2}^{2}=x_{2}^{2}+y_{2}^{2} .
\end{aligned}
$$

\sim is symmetric, since

$$
\begin{aligned}
\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) & \Longleftrightarrow\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right) \\
x_{1}^{2}+y_{1}^{2} & =x_{2}^{2}+y_{2}^{2}
\end{aligned} \Longleftrightarrow x_{2}^{2}+y_{2}^{2}=x_{1}^{2}+y_{1}^{2} .
$$

\sim is transitive, since

$$
\begin{aligned}
\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) & \sim\left(x_{3}, y_{3}\right) \\
& \Longleftrightarrow\left(x_{1}, y_{1}\right) \sim\left(x_{3}, y_{3}\right), \\
x_{1}^{2}+y_{1}^{2}=x_{2}^{2}+y_{2}^{2} \text { and } x_{2}^{2}+y_{2}^{2}=x_{3}^{2}+y_{3}^{2} & \Longleftrightarrow x_{1}^{2} x_{1}^{2}+y_{1}^{2}=x_{3}^{2}+y_{3}^{2} \quad \Longleftrightarrow x_{1}^{2}+y_{1}^{2}=x_{3}^{2}+y_{3}^{2},
\end{aligned}
$$

Two pairs of real numbers are in the same equivalence class when they lie on the same circle around the origin.

Exercise 3. Determine whether or not the following relations are equivalence relations on the given set. Show which properties of an equivalence relations hold and which not.

Solution. (a) $x \sim y$ in \mathbb{R} if $x \geqslant y$.

- Reflexive: $x \geqslant x$ and $y \geqslant y$.
- Anti-symmetric: $x \geqslant y \wedge y \geqslant x \Longrightarrow x=y$.
- Transitive: $x \geqslant y \wedge y \geqslant z \Longrightarrow x \geqslant z$.
(b) $m \sim n$ in \mathbb{Z} if $m n>0$.
- Reflexive: $m m \geqslant 0$.
- Symmetric: $m n \geqslant 0 \Longrightarrow n m \geqslant 0$.
- Transitive: $m n \geqslant 0 \wedge n k \geqslant 0 \Longrightarrow m k \geqslant 0$.
(c) $x \sim y$ in \mathbb{R} if $|x-y| \leqslant 4$.
- Reflexive: $|x-x| \leqslant 4$.
- Symmetric: $|x-y| \leqslant 4 \Longrightarrow|y-x| \leqslant 4$, since $|x-y|=|y-x|$.
- Not transitive: $|x-y| \leqslant 4 \wedge|y-z| \leqslant 4 \nRightarrow|x-z| \leqslant 4$. A counter-example: $x=8, y=4, z=1$. We have $|8-4| \leqslant 4 \wedge|4-1| \leqslant 4 \nRightarrow|8-1|=7 \leqslant 4$.
(d) $m \sim n$ in \mathbb{Z} if $m \equiv n(\bmod 6)$.
- Reflexive: $m \equiv m(\bmod 6)$.
- Symmetric: $m \equiv n(\bmod 6) \Longrightarrow n \equiv m(\bmod 6)$. If $n \mid(m-n)$, then also $n \mid(n-m)$.
- Transitive: $m \equiv n(\bmod 6) \wedge n \equiv k(\bmod 6) \Longrightarrow m \equiv k(\bmod 6)$. There exist $\alpha, \beta \in \mathbb{Z}: m=6 \alpha+n$ and $n=6 \beta+k$. This means that $m=6(\alpha+\beta)+k$, hence $m \equiv k$.

Exercise 4. Define a relation \sim on \mathbb{R}^{2} by stating that

$$
(a, b) \sim(c, d) \Longleftrightarrow a^{2}+b^{2} \leqslant c^{2}+d^{2}
$$

Show that \sim is reflexive, transitive, but not symmetric.
Solution. \sim is reflexive, since

$$
(a, b) \sim(a, b) \Longleftrightarrow a^{2}+b^{2} \leqslant a^{2}+b^{2} .
$$

\sim is anti-symmetric, since

$$
\begin{aligned}
(a, b) \sim(c, d) \wedge(c, d) \sim(a, b) & \Longrightarrow(a, b)=(c, d) \\
a^{2}+b^{2} \leqslant c^{2}+d^{2} \wedge c^{2}+d^{2} \leqslant a^{2}+b^{2} & \Longrightarrow a^{2}+b^{2}=c^{2}+d^{2}
\end{aligned}
$$

\sim is transitive, since

$$
\begin{aligned}
(a, b) \sim(c, d) \sim(e, f) & \Longrightarrow(a, b) \sim(e, f) \\
a^{2}+b^{2} \leqslant c^{2}+d^{2} \leqslant e^{2}+f^{2} & \Longrightarrow a^{2}+b^{2} \leqslant e^{2}+f^{2}
\end{aligned}
$$

Exercise 5 (Projective Real Line $\mathbb{P}(\mathbb{R})$). Define a relation on $\mathbb{R}^{2} \backslash(0,0)$:

$$
\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) \Longleftrightarrow \exists \lambda \in \mathbb{R}, \lambda \neq 0:\left(x_{1}, y_{1}\right)=\left(\lambda x_{2}, \lambda y_{2}\right)
$$

Show that \sim defines an equivalence relation on $\mathbb{R}^{2} \backslash(0,0)$.
Solution. \sim is reflexive:

$$
\left(x_{1}, y_{1}\right) \sim\left(x_{1}, y_{1}\right) \Longleftrightarrow\left(x_{1}, y_{1}\right)=\left(1 \cdot x_{1}, 1 \cdot y_{1}\right)
$$

\sim is symmetric:

$$
\begin{aligned}
\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right) & \Longleftrightarrow\left(x_{2}, y_{2}\right) \sim\left(x_{1}, y_{1}\right) \\
\left(x_{1}, y_{1}\right)=\left(\lambda x_{2}, \lambda y_{2}\right) & \Longleftrightarrow\left(x_{2}, y_{2}\right)=\left(\frac{1}{\lambda} x_{1}, \frac{1}{\lambda} y_{1}\right)
\end{aligned}
$$

To show that \sim is transitive, assume $\left(x_{1}, y_{1}\right) \sim\left(x_{2}, y_{2}\right)$ and $\left(x_{2}, y_{2}\right) \sim\left(x_{3}, y_{3}\right)$. We need to show that $\left(x_{1}, y_{1}\right) \sim\left(x_{3}, y_{3}\right)$.

$$
\begin{aligned}
\left(x_{1}, y_{1}\right) & =\left(\lambda x_{2}, \lambda y_{2}\right) \\
\left(x_{2}, y_{2}\right) & =\left(\gamma x_{3}, \gamma y_{3}\right) \\
\left(x_{1}, y_{1}\right) & =\left(\lambda x_{2}, \lambda y_{2}\right)=\left(\lambda \gamma x_{3}, \lambda \gamma y_{3}\right)
\end{aligned}
$$

Hence, $\left(x_{1}, y_{1}\right) \sim\left(x_{3}, y_{3}\right)$ and so \sim is reflexive, symmetric and transitive and hence is an equivalence relation on $\mathbb{R} \backslash(0,0)$.

Exercise 6. Let $\mathbb{Z} *$ be the set of all non-zero integers, and let R be a relation on $\mathbb{Z} \times \mathbb{Z} *$ given by

$$
\forall x, y \in \mathbb{Z}, \forall x^{\prime}, y^{\prime} \in \mathbb{Z} *:(x, y) R\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow x y^{\prime}=x^{\prime} y
$$

Show that R is an equivalence relation.
Solution. R is reflexive, since $(x, y)=(x, y) \Longrightarrow x y=x y . R$ is symmetric since $(x, y)=\left(x^{\prime} y^{\prime}\right)$ if $x y^{\prime}=x^{\prime} y$, as well as $\left(x^{\prime} y^{\prime}\right)=(x, y)$ if $x^{\prime} y=x y^{\prime}$. Finally, to show that R is transitive, consider the case when $(x, y)=\left(x^{\prime}, y^{\prime}\right)=\left(x^{\prime \prime}, y^{\prime \prime}\right)$. This means that

$$
\begin{aligned}
(x, y) & =\left(x^{\prime}, y^{\prime}\right) \Longrightarrow x y^{\prime}=x^{\prime} y \\
\left(x^{\prime}, y^{\prime}\right) & =\left(x^{\prime \prime}, y^{\prime \prime}\right) \Longrightarrow x^{\prime} y^{\prime \prime}=x^{\prime \prime} y^{\prime}
\end{aligned}
$$

We need to show that $(x, y)=\left(x^{\prime \prime}, y^{\prime \prime}\right) \Longrightarrow x y^{\prime \prime}=x^{\prime \prime} y$. From equality $x y^{\prime}=x^{\prime} y$ we extract $y^{\prime}=\frac{x^{\prime} y}{x}$ and substitute y^{\prime} with it in equality $x^{\prime} y^{\prime \prime}=x^{\prime \prime} y^{\prime}$ to obtain

$$
x^{\prime} y^{\prime \prime}=x^{\prime \prime} y^{\prime} \Longrightarrow x^{\prime} y^{\prime \prime}=\frac{x^{\prime \prime} x^{\prime} y}{x} \Longrightarrow x x^{\prime} y^{\prime \prime}=x^{\prime \prime} x^{\prime} y \Longrightarrow x y^{\prime \prime}=x^{\prime \prime} y
$$

