Exercise 1. Let p, q, r, s, t, u be integers, where q, s, u are non-zero. A relation R is defined by

$$\frac{p}{q} \sim \frac{r}{s} \Longleftrightarrow ps = qr \ .$$

Show that R is an equivalence relation.

Solution. Clearly, \sim is reflexive, since

$$rac{p}{q} \sim rac{p}{q} \Longleftrightarrow pq = pq$$
 ,
 $rac{q}{r} \sim rac{q}{r} \Longleftrightarrow qr = qr$.

 \sim is symmetric, since

$$\frac{p}{q} \sim \frac{r}{s} \iff \frac{r}{s} \sim \frac{p}{q}$$
$$ps = qr \iff rq = ps \ .$$

 \sim is also transitive. To show this consider

$$\frac{p}{q} \sim \frac{r}{s} \sim \frac{t}{u}$$
 .

Then ps = qr and ru = st. Therefore,

$$\frac{ps}{q} = r = \frac{st}{u}$$
$$\frac{ps}{q} = \frac{st}{u}$$
$$psu = stq$$

Since $s \neq 0$, we have pu = qt. Consequently, $\frac{p}{q} \sim \frac{t}{u}$. Two pairs of integers (p,q) and (r,s) are in the same equivalence class when they reduce to the same fraction in its lowest terms.

Exercise 2. For (x_1, y_1) and (x_2, y_2) in \mathbb{R}^2 , relation R is defined by

$$(x_1, y_1) \sim (x_2, y_2) \iff x_1^2 + y_1^2 = x_2^2 + y_2^2$$

Show that R is an equivalence relation.

Solution. Indeed, \sim is reflexive, since

$$(x_1, y_1) \sim (x_1, y_1) \iff x_1^2 + y_1^2 = x_1^2 + y_1^2 ,$$

 $(x_2, y_2) \sim (x_2, y_2) \iff x_2^2 + y_2^2 = x_2^2 + y_2^2 .$

 \sim is symmetric, since

$$\begin{aligned} & (x_1, y_1) \sim (x_2, y_2) \Longleftrightarrow (x_2, y_2) \sim (x_1, y_1) \ , \\ & x_1^2 + y_1^2 = x_2^2 + y_2^2 \Longleftrightarrow x_2^2 + y_2^2 = x_1^2 + y_1^2 \ . \end{aligned}$$

 \sim is transitive, since

$$(x_1, y_1) \sim (x_2, y_2) \sim (x_3, y_3) \iff (x_1, y_1) \sim (x_3, y_3) ,$$

$$x_1^2 + y_1^2 = x_2^2 + y_2^2 \text{ and } x_2^2 + y_2^2 = x_3^2 + y_3^2 \iff x_1^2 x_1^2 + y_1^2 = x_3^2 + y_3^2 \iff x_1^2 + y_1^2 = x_3^2 + y_3^2 ,$$

Two pairs of real numbers are in the same equivalence class when they lie on the same circle around the origin.

Exercise 3. Determine whether or not the following relations are equivalence relations on the given set. Show which properties of an equivalence relations hold and which not.

Solution. (a) $x \sim y$ in \mathbb{R} if $x \ge y$.

- Reflexive: $x \ge x$ and $y \ge y$.
- Anti-symmetric: $x \ge y \land y \ge x \implies x = y$.
- Transitive: $x \ge y \land y \ge z \implies x \ge z$.

(b) $m \sim n$ in \mathbb{Z} if mn > 0.

- Reflexive: $mm \ge 0$.
- Symmetric: $mn \ge 0 \implies nm \ge 0$.
- Transitive: $mn \ge 0 \land nk \ge 0 \implies mk \ge 0$.

(c) $x \sim y$ in \mathbb{R} if $|x - y| \leq 4$.

- Reflexive: $|x x| \leq 4$.
- Symmetric: $|x y| \leq 4 \implies |y x| \leq 4$, since |x y| = |y x|.
- Not transitive: $|x y| \leq 4 \land |y z| \leq 4 \implies |x z| \leq 4$. A counter-example: x = 8, y = 4, z = 1. We have $|8 4| \leq 4 \land |4 1| \leq 4 \implies |8 1| = 7 \leq 4$.
- (d) $m \sim n$ in \mathbb{Z} if $m \equiv n \pmod{6}$.
 - Reflexive: $m \equiv m \pmod{6}$.
 - Symmetric: $m \equiv n \pmod{6} \implies n \equiv m \pmod{6}$. If $n \mid (m-n)$, then also $n \mid (n-m)$.
 - Transitive: $m \equiv n \pmod{6} \land n \equiv k \pmod{6} \implies m \equiv k \pmod{6}$. There exist $\alpha, \beta \in \mathbb{Z} : m = 6\alpha + n$ and $n = 6\beta + k$. This means that $m = 6(\alpha + \beta) + k$, hence $m \equiv k$.

Exercise 4. Define a relation \sim on \mathbb{R}^2 by stating that

$$(a,b) \sim (c,d) \iff a^2 + b^2 \leqslant c^2 + d^2$$

Show that \sim is reflexive, transitive, but not symmetric.

Solution. \sim is reflexive, since

$$(a,b) \sim (a,b) \iff a^2 + b^2 \leqslant a^2 + b^2$$

 \sim is anti-symmetric, since

$$\begin{aligned} (a,b) \sim (c,d) \wedge (c,d) \sim (a,b) \implies (a,b) = (c,d) \ , \\ a^2 + b^2 \leqslant c^2 + d^2 \wedge c^2 + d^2 \leqslant a^2 + b^2 \implies a^2 + b^2 = c^2 + d^2 \ . \end{aligned}$$

 \sim is transitive, since

$$\begin{aligned} (a,b) \sim (c,d) \sim (e,f) \implies (a,b) \sim (e,f) \ , \\ a^2 + b^2 \leqslant c^2 + d^2 \leqslant e^2 + f^2 \implies a^2 + b^2 \leqslant e^2 + f^2 \ . \end{aligned}$$

Exercise 5 (Projective Real Line $\mathbb{P}(\mathbb{R})$). Define a relation on $\mathbb{R}^2 \setminus (0, 0)$:

$$(x_1, y_1) \sim (x_2, y_2) \iff \exists \lambda \in \mathbb{R}, \lambda \neq 0 : (x_1, y_1) = (\lambda x_2, \lambda y_2)$$

Show that ~ defines an equivalence relation on $\mathbb{R}^2 \setminus (0,0)$.

Solution. \sim is reflexive:

$$(x_1, y_1) \sim (x_1, y_1) \iff (x_1, y_1) = (1 \cdot x_1, 1 \cdot y_1)$$
.

 \sim is symmetric:

$$(x_1, y_1) \sim (x_2, y_2) \iff (x_2, y_2) \sim (x_1, y_1) ,$$

$$(x_1, y_1) = (\lambda x_2, \lambda y_2) \iff (x_2, y_2) = (\frac{1}{\lambda} x_1, \frac{1}{\lambda} y_1)$$

To show that \sim is transitive, assume $(x_1, y_1) \sim (x_2, y_2)$ and $(x_2, y_2) \sim (x_3, y_3)$. We need to show that $(x_1, y_1) \sim (x_3, y_3)$.

$$(x_1, y_1) = (\lambda x_2, \lambda y_2) ,$$

$$(x_2, y_2) = (\gamma x_3, \gamma y_3) ,$$

$$(x_1, y_1) = (\lambda x_2, \lambda y_2) = (\lambda \gamma x_3, \lambda \gamma y_3)$$

Hence, $(x_1, y_1) \sim (x_3, y_3)$ and so ~ is reflexive, symmetric and transitive and hence is an equivalence relation on $\mathbb{R} \setminus (0, 0)$.

Exercise 6. Let \mathbb{Z}^* be the set of all non-zero integers, and let R be a relation on $\mathbb{Z} \times \mathbb{Z}^*$ given by

$$\forall x, y \in \mathbb{Z}, \forall x', y' \in \mathbb{Z} * : (x, y) R(x', y') \Longleftrightarrow xy' = x'y .$$

Show that R is an equivalence relation.

Solution. R is reflexive, since $(x, y) = (x, y) \implies xy = xy$. R is symmetric since (x, y) = (x'y') if xy' = x'y, as well as (x'y') = (x, y) if x'y = xy'. Finally, to show that R is transitive, consider the case when (x, y) = (x', y') = (x'', y''). This means that

$$(x,y) = (x',y') \implies xy' = x'y , (x',y') = (x'',y'') \implies x'y'' = x''y' .$$

We need to show that $(x, y) = (x'', y'') \implies xy'' = x''y$. From equality xy' = x'y we extract $y' = \frac{x'y}{x}$ and substitute y' with it in equality x'y'' = x''y' to obtain

$$x'y'' = x''y' \implies x'y'' = \frac{x''x'y}{x} \implies xx'y'' = x''x'y \implies xy'' = x''y \ .$$