
Exercise 1. Let p, q, r, s, t, u be integers, where q, s, u are non-zero. A relation R is defined by
p

q
∼ r

s
⇐⇒ ps = qr .

Show that R is an equivalence relation.

Solution. Clearly, ∼ is reflexive, since
p

q
∼ p

q
⇐⇒ pq = pq ,

q

r
∼ q

r
⇐⇒ qr = qr .

∼ is symmetric, since
p

q
∼ r

s
⇐⇒ r

s
∼ p

q

ps = qr ⇐⇒ rq = ps .

∼ is also transitive. To show this consider
p

q
∼ r

s
∼ t

u
.

Then ps = qr and ru = st. Therefore,

ps

q
= r =

st

u
ps

q
=

st

u

psu = stq

Since s ̸= 0, we have pu = qt. Consequently, p
q ∼ t

u . Two pairs of integers (p, q) and (r, s) are in
the same equivalence class when they reduce to the same fraction in its lowest terms.

Exercise 2. For (x1, y1) and (x2, y2) in R2, relation R is defined by

(x1, y1) ∼ (x2, y2) ⇐⇒ x21 + y21 = x22 + y22 .

Show that R is an equivalence relation.

Solution. Indeed, ∼ is reflexive, since

(x1, y1) ∼ (x1, y1) ⇐⇒ x21 + y21 = x21 + y21 ,

(x2, y2) ∼ (x2, y2) ⇐⇒ x22 + y22 = x22 + y22 .

∼ is symmetric, since

(x1, y1) ∼ (x2, y2) ⇐⇒ (x2, y2) ∼ (x1, y1) ,

x21 + y21 = x22 + y22 ⇐⇒ x22 + y22 = x21 + y21 .

1



∼ is transitive, since

(x1, y1) ∼ (x2, y2) ∼ (x3, y3) ⇐⇒ (x1, y1) ∼ (x3, y3) ,

x21 + y21 = x22 + y22 and x22 + y22 = x23 + y23 ⇐⇒ x21x
2
1 + y21 = x23 + y23 ⇐⇒ x21 + y21 = x23 + y23 ,

Two pairs of real numbers are in the same equivalence class when they lie on the same circle around
the origin.

Exercise 3. Determine whether or not the following relations are equivalence relations on the
given set. Show which properties of an equivalence relations hold and which not.

Solution. (a) x ∼ y in R if x ⩾ y.

• Reflexive: x ⩾ x and y ⩾ y.
• Anti-symmetric: x ⩾ y ∧ y ⩾ x =⇒ x = y.
• Transitive: x ⩾ y ∧ y ⩾ z =⇒ x ⩾ z.

(b) m ∼ n in Z if mn > 0.

• Reflexive: mm ⩾ 0.
• Symmetric: mn ⩾ 0 =⇒ nm ⩾ 0.
• Transitive: mn ⩾ 0 ∧ nk ⩾ 0 =⇒ mk ⩾ 0.

(c) x ∼ y in R if |x− y| ⩽ 4.

• Reflexive: |x− x| ⩽ 4.
• Symmetric: |x− y| ⩽ 4 =⇒ |y − x| ⩽ 4, since |x− y| = |y − x|.
• Not transitive: |x − y| ⩽ 4 ∧ |y − z| ⩽ 4 ≠⇒ |x − z| ⩽ 4. A counter–example:

x = 8, y = 4, z = 1. We have |8− 4| ⩽ 4 ∧ |4− 1| ⩽ 4 ≠⇒ |8− 1| = 7 ⩽ 4.

(d) m ∼ n in Z if m ≡ n (mod 6).

• Reflexive: m ≡ m (mod 6).
• Symmetric: m ≡ n (mod 6) =⇒ n ≡ m (mod 6). If n|(m− n), then also n|(n−m).
• Transitive: m ≡ n (mod 6) ∧ n ≡ k (mod 6) =⇒ m ≡ k (mod 6). There exist

α, β ∈ Z : m = 6α+n and n = 6β+k. This means that m = 6(α+β)+k, hence m ≡ k.

Exercise 4. Define a relation ∼ on R2 by stating that

(a, b) ∼ (c, d) ⇐⇒ a2 + b2 ⩽ c2 + d2 .

Show that ∼ is reflexive, transitive, but not symmetric.

Solution. ∼ is reflexive, since

(a, b) ∼ (a, b) ⇐⇒ a2 + b2 ⩽ a2 + b2 .
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∼ is anti-symmetric, since

(a, b) ∼ (c, d) ∧ (c, d) ∼ (a, b) =⇒ (a, b) = (c, d) ,

a2 + b2 ⩽ c2 + d2 ∧ c2 + d2 ⩽ a2 + b2 =⇒ a2 + b2 = c2 + d2 .

∼ is transitive, since

(a, b) ∼ (c, d) ∼ (e, f) =⇒ (a, b) ∼ (e, f) ,

a2 + b2 ⩽ c2 + d2 ⩽ e2 + f2 =⇒ a2 + b2 ⩽ e2 + f2 .

Exercise 5 (Projective Real Line P(R)). Define a relation on R2 \ (0, 0):

(x1, y1) ∼ (x2, y2) ⇐⇒ ∃λ ∈ R, λ ̸= 0 : (x1, y1) = (λx2, λy2) .

Show that ∼ defines an equivalence relation on R2 \ (0, 0).
Solution. ∼ is reflexive:

(x1, y1) ∼ (x1, y1) ⇐⇒ (x1, y1) = (1 · x1, 1 · y1) .

∼ is symmetric:

(x1, y1) ∼ (x2, y2) ⇐⇒ (x2, y2) ∼ (x1, y1) ,

(x1, y1) = (λx2, λy2) ⇐⇒ (x2, y2) = (
1

λ
x1,

1

λ
y1) .

To show that ∼ is transitive, assume (x1, y1) ∼ (x2, y2) and (x2, y2) ∼ (x3, y3). We need to show
that (x1, y1) ∼ (x3, y3).

(x1, y1) = (λx2, λy2) ,

(x2, y2) = (γx3, γy3) ,

(x1, y1) = (λx2, λy2) = (λγx3, λγy3) .

Hence, (x1, y1) ∼ (x3, y3) and so ∼ is reflexive, symmetric and transitive and hence is an equivalence
relation on R \ (0, 0).
Exercise 6. Let Z∗ be the set of all non-zero integers, and let R be a relation on Z×Z∗ given by

∀x, y ∈ Z,∀x′, y′ ∈ Z∗ : (x, y)R(x′, y′) ⇐⇒ xy′ = x′y .

Show that R is an equivalence relation.
Solution. R is reflexive, since (x, y) = (x, y) =⇒ xy = xy. R is symmetric since (x, y) = (x′y′) if
xy′ = x′y, as well as (x′y′) = (x, y) if x′y = xy′. Finally, to show that R is transitive, consider the
case when (x, y) = (x′, y′) = (x′′, y′′). This means that

(x, y) = (x′, y′) =⇒ xy′ = x′y ,

(x′, y′) = (x′′, y′′) =⇒ x′y′′ = x′′y′ .

We need to show that (x, y) = (x′′, y′′) =⇒ xy′′ = x′′y. From equality xy′ = x′y we extract
y′ = x′y

x and substitute y′ with it in equality x′y′′ = x′′y′ to obtain

x′y′′ = x′′y′ =⇒ x′y′′ =
x′′x′y

x
=⇒ xx′y′′ = x′′x′y =⇒ xy′′ = x′′y .
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