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Side note: notions
Given a set of data points, partition them into groups with respect
to chosen similarity criteria.

I Attribute or variable is the smallest- indivisible element of the
data (dataset).

I Data point or observation point- tuple of attributes or
variables composed with respect to the experiment setting.

I Feature - is the set of attributes composed either with respect
to some properties or by some algorithm. NB! The attributes
of a feature may be selected on the basis of the associations
between them, but the associations itself does not represent
the part of the feature. Roughly speaking feature does not
contain any explicit information about the relationships
between its attributes.

I Pattern is defined by two sets of conditions. The first set
defines the elements (features or attributes) and the second
one defines associations between the attributes.

I In some cases notion of the Templates is also used.



Different approaches

I Representative based algorithms

I Hierarchical Clustering Algorithms

I Group-Based Statistics

I Grid- and density- based methods



Representative-Based Algorithms

I The k-Means Algorithm.

I The Kernel k-Means Algorithm

I The k-Medians Algorithm

I The k-Medoids Algorithm



K-means

The goal is to cluster the data into K clusters, whereas no labeled
data are given.

I Case of unsupervised learning.

I K is the hyperparameter.



K-means clustering

I Initialization: Generate randomly K points, called Centroids.
Each centroid represent one of the K classes.
repeat

I Associate each point with the cluster represented by the
closest centroid. zi = arg mink || xi − µk ||22. zi - is the cluster
label.

I Update centroids for each cluster as

µk =
1

Nk

∑
i:zi=k

xi

until converged;



Example 1 of 4
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Example 2 of 4
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iteration 4, loglik −556.5970
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Example 3 of 4
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Example 4 of 4, Convergence
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K -means algorithm

I K - means algorithm is guaranteed to converge.

I Clustering depend on the particular initialization. Different
runs may produce different clusterings. Solution is not global.

I Centroids are the parameters of the model.

I K - means algorithm allows to discover latent structure of the
data



K -means algorithm

I K - means algorithm is guaranteed to converge.

I Clustering depend on the particular initialization. Different
runs may produce different clusterings. Solution is not global.

I Centroids are the parameters of the model.

I K - means algorithm allows to discover latent structure of the
data.

I K - means algorithm works well when the data consists of
well-separated Gaussians.

I K - means algorithm performs poorly on the data which does
not resemble Gausssian at all.

I Number of classes K should be known or guessed.



K -means implementation in MATLAB environment

[idx,C,sumd,D] = kmeans(X,k,Name,Value)

I idx - returns cluster indexes for each point.

I C - returns centroids.

I sumd - for each cluster returns the sum of the distances from
points to corresponding centroid.

I D - returns distance from each point to every centroid.

I X - initial data to cluster.

I k - number of clusters.

I Name refers to the name of the parameter name to be set.

’Distance’

I Value is the value of the parameter to be set.

’cityblock’



Gaussian

I One-dimensional
I Do you remember a bell shaped curve?
I Parameterized by mean µ and variance σ2

I Probability density function (pdf):

p(x | µ, σ2) =
1√

2πσ2
exp− (x− µ)2

2σ2

I D-dimensional: Parameterized by mean vector µ and the
covariance matrix Σ.

p(x | µ,Σ) =
1

(2π)D/2
| Σ |1/2 exp

[
−1

2
(x−µ)TΣ−1(x−µ)

]
I Derive for the 2- and 3- dimensional cases.



Cluster Validation

I Internal Cluster Validation
I Sum of square distances to centroids;
I Intracluster to intercluster distance ratio;
I Silhouette coefficient;
I Probabilistic measure;

I External Cluster Validation, used when ground truth
information is available.

I Confusion matrix;
I Cluster purity;
I Gini index;



Intracluster to intercluster distance ratio
Sample r pairs of data points from the underlying data.

I Let P is the set of pairs that belong to the same cluster and
Q is the set of remaining pairs.

I Average intracluster distance:

Intra =

∑(
X̄i,X̄j

)
∈P

dist
(
X̄i, X̄j

)
|P |

I Average intercluster distance:

Inter =

∑(
X̄i,X̄j

)
∈Q

dist
(
X̄i, X̄j

)
|Q|

I Smaller values of the ratio Intra/Inter indicate better
clustering behaviour.



Silhouette coefficient

I Davgin
i average distance of X̄i to data points within its own

cluster i.

I Davgout
i,j average distance of X̄i to data points of cluster j.

I Dminout
i = min

{
Davgout

i,j

}
.

I Silhouette coefficient specific to the ith data point is defined
as follows

Si =
Dminout

i −Davgin
i

max
{

Dminout
i ,Davgin

i

}
I The overall silhouette coefficient is the average of data-point

specific coefficients.

I The silhouette coefficient will take values from (−1, 1). Large
positive values indicate highly separated clusters.



Cluster Purity

I Let mij represent the number of data points from class
(ground-truth cluster) i that are mapped to (algorithm determined)
cluster j.

I Denote number of data points in true cluster i are by Ni,the
number of data points in algorithm-determined cluster j by Mj .

Ni =

kd∑
j=1

mij ; Mj =

kt∑
i=1

mij ;

I For a given algorithm-determined cluster j, the number of data
points Pj in its dominant class is: Pj = max

i
mij .

I Purity index is defined

Pa =

kd∑
j=1

Pj

kd∑
j=1

Mj

.



Gini index

I Gini index for algorithm determined cluster j is defined:

Gj = 1−
kt∑
i=1

(
mij

Mj

)2

.

I Average Gini index is defined as follows:

G =

kd∑
j=1

GjMj

kd∑
j=1

Mj

.



Relations to the Entropy

Ej = −
kt∑
i=1

(
mij

Mj

)
log

(
mij

Mj

)
.

E =

kd∑
j=1

EjMj

kd∑
j=1

Mj

.


