Machine Learning

Supervised learning 1

S. Nõmm
${ }^{1}$ Department of Software Science, Tallinn University of Technology

20.02.2020

Supervised learning

Is a task of inferring function (training a model) on the basis of labeled training data. The goal is to construct a function (train a model) which would mimic (in a certain sense) behaviour of the underling process.

- Regression: Dependent variable (continuous) plays a role of labels.
- Linear
- Nonlinear
- Application of trees and SVM for regression.
- Advanced methods like Neural Networks, etc.
- Classification labels are discrete (categorical values).
- k-nearest neighbours.
- Decision trees.
- Support Vector Machines.
- Neural networks.
- Ensemble (committee).
- Boosted techniques.
- Markov models.

Classification

- Learning existing grouping on the basis of the labeled (training) set.
- The goal is to generate (choose the structure and train) a model which would mimic existing grouping.
- Based on the features of the element model should estimate which class element belong to or estimate value of dependent variable.
- Unlike the case of unsupervised learning miss classification may be precisely measured.
- What is the cost of miss classification or error in the case of regression?

k - nearest neighbours (k-NN)

- Let D denote training (labeled) data set.
- For each unlabeled point (point to be classified)
- Find k - nearest neighbours.
- Assign mode (majority) label of k - nearest neighbours.
k - nearest neighbors, geometric interpretation, 2D

- Decision boundary (decision surface) (statistical classification with two classes) is a hypersurface that partitions the data set into two subsets, one for each class.
- Classifier tries to learn (construct) decision boundary that will lead minimal empirical error.

k - nearest neighbors, 3D

Accuracy

During the training (learning) process classifier tries to learn (construct) decision boundary that will lead minimal empirical error.

How good is trained classifier?

Validation

- Overall accuracy and Confusion matrix (table), computed for the validation subset, are the goodness parameters of trained classifier.

	Predicted Class 1	Predicted class 2
Actual class 1	58	2
Actual class 2	6	134

- How reliable these parameters are ?

Cross validation

- Non-exhaustive do not use all possible ways of splitting into training and validation sets
- k - fold.
- Holdout.
- Repeated random sub-sampling.
- Exhaustive: use all possible ways to divide the data set into training and validation sets
- Leave p-out cross validation.
- Leave one out cross validation.

Cross validation: k - fold validation

- Divide the training data (after removing test data) randomly into k folds.
- Perform following k experiments:
- Compose the training data by concatenating k - 1 folds leaving one fold out.
- Train the model on those k - 1 folds
- Test it on the left-out fold
- Record the result
- Report the average of the k experiments.

Learning: Underfitting and overfitting

- Underfitting the learned function is too simple In the context of human learning: underfitting similar to the case when one learns too little.
- Overfitting the learned function is too complex In the context of human learning: overfitting is more similar to memorizing than learning.

Feature selection for classification

- Case of categorical data: Gini Index or Entropy

$$
G\left(v_{i}\right)=1-\sum_{j=1}^{k} p_{j}^{2} ; \quad E\left(v_{i}\right)=-\sum_{j=1}^{k} p_{j} \log _{2}\left(p_{j}\right)
$$

where p_{j} is the fraction of data points containing attribute value v_{i}. Lower values of Gini index or Entropy imply greater discriminative power.

- Case of numeric data: Fisher score

$$
F=\frac{\sum_{j=1}^{k} p_{j}\left(\mu_{j}-\mu\right)^{2}}{\sum_{j=1}^{k} p_{j} \sigma_{j}^{2}}
$$

Greater values imply greater discriminative power of the variable.

- Wrapper methods.

Classification model goodness!

- How good is the model?
- What is the goal of modeling?

Classification outcome

- Consider binary classifier.
- In the data set there are two classes: Positive (P) and negative (N)
- Outcomes of the classification: True positive, true negative, false positive (type I error), false negative(type II error).

Context of information retrieval

NB! Observe notions!

- Relevant elements of the data set. One is interested to find (retrieve elements of the certain class).
- Precision is defined as:

$$
\text { precision }=\frac{\mid \text { relevant } \cap \text { retrieved } \mid}{\mid \text { retrieved } \mid}
$$

- Recall is defined as:

$$
\text { recall }=\frac{\mid \text { relevant } \cap \text { retrieved } \mid}{\mid \text { relevant } \mid}
$$

Context of classification I

Denote: $t p$ - true positive, $t n$ - true negative, $f p$ - false positive and $f n$ false negative.

- Precision:

$$
\text { Precision }=\frac{t p}{t p+f p}
$$

- Recall:

$$
\text { Recall }=\frac{t p}{t p+f n}
$$

- True negative rate (Specificity):

$$
\mathrm{TNR}=\frac{t n}{t n+f p}
$$

- Accuracy:

$$
\text { Accuracy }=\frac{t p+t n}{t p+t n+f p+f n}
$$

- Predicted positive condition rate

Predicted positive condition rate $=\frac{t p+f p}{t p+t n+f p+f n}$

F-measure not to be confused with similarly named values!!!

Frequently referred as F_{1}-score \ldots is harmonic average of precision and recall.

$$
F=2 * \frac{\text { precisionrecall }}{\text { precision }+ \text { recall }}
$$

- More general definition:

$$
F_{\beta}=\left(1+\beta^{2}\right) \frac{\text { precisionrecall }}{\beta^{2} \text { precision }+ \text { recall }}
$$

Receiver Operating Characteristic or ROC curve

- Let $\mathcal{D}=\left\{x_{i}, y_{i}\right\}$ is the labeled data set.
- Assume also that $\delta(x)=\mathbb{I}(f(x)>\tau)$ - decision rule. $f(x)$ is the confidence function and τ threshold parameter
- Each particular value of τ corresponds to a certain decision rule.
- For each decision rule one may compute recall and false positive rate.
- Associate recall values with the axis Y and false positive rate values with axis X .

Linear regression: probably the oldest machine learning technique

- Find leaner correlation coefficient.
- Compute coefficients of the linear equation

$$
\hat{y}=a x+b
$$

- Evaluate the model
- In multivariate case it is required to identify coefficients of the model

$$
\hat{y}=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}+b
$$

This leads the necessity to choose variables (perform model building).

Linear regression

- Correlation coefficient.

$$
\rho=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}}}
$$

where, n - is the sample size, x and y are the variable of interest.

- $-1 \leq \rho \leq 1$
- Assumption there are exist α and β such that for any $i=1, \ldots, n$ $y_{i}=\alpha x_{i}+\beta+\varepsilon_{i}$ holds. Assumption: ε is sufficiently small normally distributed.
- The goal of regression is to find estimates of the coefficients α and β, such that for a and b

$$
y_{i}=a x_{i}+b+\hat{\varepsilon_{i}}
$$

sum of squares of $\hat{\varepsilon_{i}}$ would be minimal. NB! notation $\hat{\alpha}$ and $\hat{\beta}$ is also widely use.

Least squares method

Least squares method:

$$
a=\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2}} ; \quad b=\bar{y}-a \bar{x}
$$

For an arbitrary number of variables:

$$
y=b_{1} x_{1}+\ldots+b_{n} x_{n}+b_{0}
$$

then

$$
\hat{b}=\left(X^{T} X\right)^{-1} X^{T} y
$$

where each row of matrix X is input vector with 1 in the first position.

Model validation

- Coefficient of determination R^{2} and adjusted R^{2}.
- Significance of the model and model coefficients.
- Verify assumption that residuals are normally distributed.
- Residual sum squares. $\mathrm{RSS}=\sum_{i=1}^{N}\left(y_{i}-x_{i}^{T} x_{i} \beta\right)^{2}$.
- Sum squares of the regression $\mathrm{SSR}=\sum_{i=1}^{N}\left(\hat{y}_{i}-\bar{y} \beta\right)^{2}$.
- Total sum squares or sum of squares about the mean $\mathrm{SSR}=\sum_{i=1}^{N}\left(y_{i}-\bar{y} \beta\right)^{2}$.
- R^{2} computed as the ratio of Sum squares of the regression to total sum squares or one minus ratio of Residual sum squares to total sum squares whereas adjusted R^{2} is one minus ratio of residual sum squares computed for $n-1$ to Total sum squares for $n-p$ observation points.

Statistical hypothesis testing (brief reminder I)

- Assumption about a parameter of population is a statistical hypothesis.
- Usually a pair of hypothesis is stated $\left(H_{0}, H_{1}\right)$, notation $\left(H_{0}, H_{a}\right)$.
- H_{0} the null hypothesis usually states that there is no statistically significant relationship between two phenomena.
- H_{1} the alternative hypothesis usually states the opposite to the H_{0}.
- Choose and compute test statistic and rejection rule.
- Interpret the results.
- What can possibly go wrong?

Statistical hypothesis testing (brief reminder II)

	Accept H_{0}	Reject H_{0}
H_{0} is true	Correct	Type 1 Error
H_{0} is false	Type II Error	Correct

Model building (feature selection)

Let us suppose that observed process has p independent variables x_{1}, \ldots, x_{p} and one dependent variable y. Should one build the regression equation using all p variables or not?

- Are all the variables x_{1}, \ldots, x_{p} uncorrelated?
- Which subset of variables result in a "better" model?
- How to prove that as a result of adding or deleting a variable model quality has improved?

"Butler tracking company" example

- Independent variables: Distance to drive and number of parcels to deliver. Dependent variable: time.
- Distances to drive for each assignment: $100,50,100,100,50,80,75$, 65, 90, 90.
- Number of parcels to deliver: $4,3,4,2,2,2,3,4,3,2$
- Time in hours: $9.3,4.8,8.9,6.5,4.2,6.2,7.4,6,7.6,6.1$.
- Pearson correlation coefficient between distance and time is 0.81 .

"Butler tracking company" example continued

Model 1
Is significant $p=0.004$, $F=15.1846$ whereas $R^{2}=0.6641$.

Model 2

Is significant $p=0.000276$,
$F=32.9$ whereas adjusted $R^{2}=0.87$.

Is it enough to say that model 2 is more precise?

Quality comparison

- To compare different models residual sum of squares (RSS) is used.
- Hypothesis statements: $H_{0}: \mathrm{RSS}_{s} \leq \mathrm{RSS}_{c} H_{1}: \mathrm{RSS}_{s}>\mathrm{RSS}_{c}$.
- Test statistic (empirical parameter) for ANOVA:

$$
F_{\text {stat }}=\left(\frac{\mathrm{RSS}_{s}-\mathrm{RSS}_{c}}{m}\right)\left(\frac{\mathrm{RSS}_{c}}{n-p-1}\right)^{-1}
$$

where RSS_{c} is the residuals sum squares of model with more variables, RSS_{s} - is the residuals sum squares of model with less variables, m number of variables added or removed, n is the number of observation points, p - is the number of variables in more complicated model.

- Rejection rule for α (significance level), degrees of freedom: first is the number of variables added or removed, second is $n-p-1$.
- Decision:
- (if adding variables) rejected null hypothesis proves that adding variables caused model quality to increase significantly.
- (if deleting variables) rejected alternative hypothesis proves that deleting variables did not cause model quality to significant decrease.

"Butler tracking company" example continued

- $\mathrm{RSS}_{1}=15.8713, \mathrm{RSS}_{2}=2.2994 \mathrm{NB}$! Observe that corresponding MATLAB notation is SSE!!!
- choose $\alpha=0.05$ degrees of freedom: first will be 1 (one variable (number of parcels)) were added, second $7(n=10, p=2)$.
- Rejection rule: reject H_{0} if $F_{\text {stat }}>5.5914$
- Compute $F_{\text {stat }}=17.4411$. (use table, or MATLAB or EXCEL)
- Reject H_{0}. Adding the variable has increased the model quality.

MLE for regression lest squares

- Linear regression is the model of the form $p(y \mid x, \theta)=\mathcal{N}\left(y \mid \beta^{T} x, \sigma^{2}\right)$.
- Parameter estimation of a statistical model is usually performed by computing MLE $\hat{\theta}=\arg \max _{\theta} \log p(\mathcal{D} \mid \theta)$.
- Assumption: elements of the training set are independent and identically distributed.
- Then log likelihood is given by $\ell(\theta)=\log p(\mathcal{D} \mid \theta)=\sum_{i=1}^{N} \log p\left(y_{i} \mid x_{i}, \theta\right)$.
- Ass usually instead of maximizing the log- likelihood one may minimize negative log likelihood.

$$
\begin{aligned}
& \ell(\theta)=\sum_{i=1}^{N} \log \left[\left(\frac{1}{2 \pi \sigma^{2}}\right) \exp \left(-\frac{1}{2 \sigma^{2}}\left(y_{i}-\beta^{T} x_{i}\right)^{2}\right)\right] \\
&=\frac{-1}{2 \sigma^{2}} \operatorname{RSS}(\beta)-\frac{N}{2} \log \left(2 \pi \sigma^{2}\right)
\end{aligned}
$$

MLE for regression lest squares

- In order to minimize RSS differentiate its equation which lead

$$
\nabla \theta=X^{T} X \beta-X^{T} y
$$

- Equate it to zero and solve for β

$$
\beta=\left(X^{T} X\right)^{-1} X^{T} Y
$$

last equation is referred as normal equation.

Questions for self practice

- Program your own k-nearest neighbours algorithm.

