Exercises

Exercise 1. Show that:

- 1. Set \mathbb{Z} is countably infinite
- 2. The set of even integers is countably infinite
- 3. The set of integers in the form 10^x , where $x \in \mathbb{Z}$ is countably infinite
- 4. There are as many odd integers as there are even integers
- 5. There is as many even numbers as there are integers

Exercise 2. Determine which of the following functions are injective and which are surjective.

- (a) $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = e^x$.
- (b) $f : \mathbb{Z} \to \mathbb{Z}$ defined by $f(n) = n^2 + 3$.
- (c) $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \sin x$.
- (d) $f : \mathbb{Z} \to \mathbb{Z}$ defined by $f(x) = x^2$.
- (e) $f : \mathbb{Z} \to \mathbb{Q}$ defined by f(n) = n/1.
- (f) $f : \mathbb{Q} \to \mathbb{Z}$ defined by f(p/q) = p, where p/q is a rational number expressed in its lowest terms with a positive denominator.
- (g) $f : \mathbb{Z} \to \mathbb{Z}$ defined by f(x) = 2x.

Exercise 3. Is relation $f \subseteq \mathbb{Q} \times \mathbb{Z}$ given by $f\left(\frac{p}{q}\right) = p$ a function?

Exercise 4. Is the relation $f \subseteq \mathbb{Z} \times \mathbb{Z}$ defined by f(x) = 2x a function?

Exercise 5. Is the relation $f \subseteq \mathbb{Z} \times \mathbb{Z}$ defined by $f(x) = \frac{x}{2}$ a function?

Exercise 6. Which of the following relations $f \subseteq \mathbb{Q} \times \mathbb{Q}$ define a function? If f is not a function, supply a reason for it.

(a)
$$f\left(\frac{p}{q}\right) = \frac{p+1}{p-2}$$
 (b) $f\left(\frac{p}{q}\right) = \frac{3p}{2q}$
(c) $f\left(\frac{p}{q}\right) = \frac{p+q}{q^2}$ (d) $f\left(\frac{p}{q}\right) = \frac{3p^2}{7q^2} - \frac{p}{q}$

Exercise 7. Given a permutation

$$\pi = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

on a set $S = \{1, 2, 3\}$, define an inverse permutation π^{-1} .

Exercise 8. Let $f(x) = x^2$ and g(x) = 2x + 5. Define compositions $(f \circ g)(x)$ and $(g \circ f)(x)$. Are they the same?

Exercise 9. Let $f(x) = x^3$ and $g(x) = \sqrt[3]{x}$. Define compositions $(f \circ g)(x)$ and $(g \circ f)(x)$. Are they the same?

Exercise 10. Let $h: S \to T$ be a bijection, and let h^{-1} be its inverse. What are the mappings $h \circ h^{-1}$ and $h^{-1} \circ h$?