Data Mining, Lecture 10: Mining Data Streams

S. Nõmm

¹Department of Computer Science, Tallinn University of Technology

April 11, 2016

Introduction

- Assumption: it is not possible to store all the data.
- In reality this assumption is not true any more. There are big data based distributed storage techniques etc.
- Avoiding this assumption leads: enormous storage costs, loss of real time processing capabilities etc.
- One may say, that assumption is true.

Examples

- Transactions.
- Web clicks.
- Social streams.
- Networks streams.

Unique challenges

- One pass content: it is assumed that the data can be processed only once.
- Concept drift: the data may evolve over time.
- Resource constraints: it is not always possible to control the process generating the stream. Loadshedding - is the process of dropping tuples which can not be processed.
- Massive domain constraints.

Synopsis Data Structures for Streams

- Generic: the structure may be used directly for most of the cases.
- Specific.

Reservoir Sampling

- Sampling is one of the methods for stream summarization.
- Main advantage of the sampling: after the sample is drawn any offline algorithm may be applied.
- Reservoir sampling is the methodology to maintain a dynamic sample from the data.
- ► In this case the sample is referred as *reservoir sample*.
- The goal is to continuously maintain a dynamically updated sample of k points from a data stream without explicitly storing the stream.
- The sampling approach works with incomplete knowledge about the previous history of the stream at any given moment in time.

Admission control

- Sampling rule to decide whether to include the incoming data point in the sample or not?
- The rule to decide whether to eject a data point from the sample or not, to make room for the newly inserted data point?

Reservoir sampling algorithm

For the sample of size k:

Initialize: include first k points into the sample.

- Insert the *n*th incoming stream data point in the reservoir with probability k/n.
- If the newly incoming data point was inserted, then eject one of the old k data points in the reservoir at random to make room for the newly arriving point.

This method allows to maintain an unbiased reservoir sample from the data stream.

Admission control

- Sampling rule to decide whether to include the incoming data point in the sample or not?
- The rule to decide whether to eject a data point from the sample or not, to make room for the newly inserted data point?

Reservoir sampling algorithm

For the sample of size k:

Initialize: include first k points into the sample.

- Insert the *n*th incoming stream data point in the reservoir with probability k/n.
- If the newly incoming data point was inserted, then eject one of the old k data points in the reservoir at random to make room for the newly arriving point.

This method allows to maintain an unbiased reservoir sample from the data stream.

Concept Drift

- Assumption: recent data considered more important than older data.
- A uniform random sample from the reservoir will contain data points that are distributed uniformly over time.
- Decay-based framework used to regulate relative importance of data points.
- So called *bias functions are used*.

Concept Drift

Let p(r, n) be the probability of the *r*th data point belong to the reservoir when *n*th point arrives. Define function f(r, n) to be proportional to p(r, n). In the frameworks of the reservoir sampling f(r, n) is referred as *bias function*.

- f(r,n) decreases monotonically with n whereas r is fixed.
- f(r, n) increases monotonically with r whereas n is fixed.
- Recent data points have a higher probability of belonging to the reservoir.

Definition

Let f(r, n) be the bias function. The sample S(n) of size n is said to be biased (or bias sensitive) with respect to the bias function f(r, n) if p(r, n) is proportional to f(r, n).

Open problem

It is an open problem to perform reservoir sampling with an arbitrary bias function. There is number of methods exists for the exponential bias function.

$$f(r,n) = e^{-\lambda(n-r)}$$

where λ defines bias rate, preferably in the range of [0, 1].

- The case when $\lambda = 0$ represents the unbiased case.
- The exponential bias function belongs to the class of memoryless functions.
- Interesting from the viewpoint of space-constrained scenarios, where reservoir size $k < 1/\lambda$.

- Assume reservoir size $k < 1/\lambda$.
- Start with an empty reservoir.
- Replacement policy:
 - Assume that before the *n*th point arrives the fraction reservoir filled is $F \in [0, 1]$.
 - Insertion probability of the point n+1 is $\lambda \cdot k$.
 - ► Consider the reservoir is not full. Random generator with the success probability of *F*(*n*) is used to decided if one of the older points should be randomly chosen to be removed from the reservoir.x

Synopsis Structures for the Massive-Domain Scenario

- Bloom filter: Given a particular element, has it ever occurred in the data stream?.
- Count-Min Sketch
- AMS Sketch
- FlajoletMartin Algorithm for Distinct Element Counting

Synopsis Structures for the Massive-Domain Scenario

- Bloom filter: Given a particular element, has it ever occurred in the data stream?.
- Count-Min Sketch
- AMS Sketch
- FlajoletMartin Algorithm for Distinct Element Counting

Frequent Pattern Mining in Data Streams

- Reservoir sampling and Sketches may be use to leverage synopsis structure.
- Lossy Counting Algorithm

Reservoir Sampling

- Maintain a reservoir sample S from the data stream.
- ► Apply a frequent pattern mining algorithm to the reservoir sample S and report the patterns.
- The probability of a pattern being a false positive can be determined by using the Chernoff bound

Theorem

Lower-Tail Chernoff Bound Let X be a random variable which can be expressed as the sum of n independent binary random variables, each takes on the value of 1 with probability p_i . Then for any $\delta \in (0, 1)$

$$P(X < (1 - \delta)E[X]) < e^{\frac{E[X]\delta^2}{2}}$$

Chernoff Bound

Theorem

Upper-Tail Chernoff Bound Let X be a random variable which can be expressed as the sum of n independent binary random variables, each takes on the value of 1 with probability p_i . Then for any $\delta \in (0, 1)$

$$P(X < (1-\delta)E[X]) < e^{\frac{-E[X]\delta^2}{4}}$$

Theorem

Lower-Tail Chernoff Bound Let X be a random variable which can be expressed as the sum of n independent binary random variables, each takes on the value of 1 with probability p_i . Then for any $\delta \in (0, 2e - 1)$

$$P(X > (1 + \delta)E[X]) < e^{\frac{-E[X]\delta^2}{2}}$$

Clustering Data Streams

- STREAM Algorithm: The core idea is to break the stream into smaller memory-resident segments.
- CluStream Algorithm: Based on the idea of micro clustering.
- Massive Domain Stream Clustering

Streaming Outlier Detection

- Outlier detection of individual records.
- Changes in the aggregate trends of the multidimensional data

Impact of the concept drift makes the problem extremely challenging.

- Very fast decision trees (VFDT).
- Supervised Microcluster Approach