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Introduction

I Assumption: it is not possible to store all the data.

I In reality this assumption is not true any more. There are big
data based distributed storage techniques etc.

I Avoiding this assumption leads: enormous storage costs, loss
of real time processing capabilities etc.

I One may say, that assumption is true.
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Examples

I Transactions.

I Web clicks.

I Social streams.

I Networks streams.
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Unique challenges

I One pass content: it is assumed that the data can be
processed only once.

I Concept drift: the data may evolve over time.

I Resource constraints: it is not always possible to control the
process generating the stream. Loadshedding - is the process
of dropping tuples which can not be processed.

I Massive domain constraints.
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Synopsis Data Structures for Streams

I Generic: the structure may be used directly for most of the
cases.

I Specific.
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Reservoir Sampling

I Sampling is one of the methods for stream summarization.

I Main advantage of the sampling: after the sample is drawn
any offline algorithm may be applied.

I Reservoir sampling is the methodology to maintain a dynamic
sample from the data.

I In this case the sample is referred as reservoir sample.

I The goal is to continuously maintain a dynamically updated
sample of k points from a data stream without explicitly
storing the stream.

I The sampling approach works with incomplete knowledge
about the previous history of the stream at any given moment
in time.
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Admission control

I Sampling rule to decide whether to include the incoming data
point in the sample or not?

I The rule to decide whether to eject a data point from the
sample or not, to make room for the newly inserted data
point?
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Reservoir sampling algorithm

For the sample of size k:
Initialize: include first k points into the sample.

I Insert the nth incoming stream data point in the reservoir
with probability k/n.

I If the newly incoming data point was inserted, then eject one
of the old k data points in the reservoir at random to make
room for the newly arriving point.

This method allows to maintain an unbiased reservoir sample from
the data stream.
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Concept Drift

I Assumption: recent data considered more important than
older data.

I A uniform random sample from the reservoir will contain data
points that are distributed uniformly over time.

I Decay-based framework used to regulate relative importance
of data points.

I So called bias functions are used.
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Concept Drift

Let p(r, n) be the probability of the rth data point belong to the
reservoir when nth point arrives. Define function f(r, n) to be
proportional to p(r, n). In the frameworks of the reservoir sampling
f(r, n) is referred as bias function.

I f(r, n) decreases monotonically with n whereas r is fixed.

I f(r, n) increases monotonically with r whereas n is fixed.

I Recent data points have a higher probability of belonging to
the reservoir.

Definition
Let f(r, n) be the bias function. The sample S(n) of size n is said
to be biased (or bias sensitive) with respect to the bias function
f(r, n) if p(r, n) is proportional to f(r, n).
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Open problem

It is an open problem to perform reservoir sampling with an
arbitrary bias function. There is number of methods exists for the
exponential bias function.

f(r, n)=e−λ(n−r)

where λ defines bias rate, preferably in the range of [0, 1].

I The case when λ = 0 represents the unbiased case.

I The exponential bias function belongs to the class of
memoryless functions.

I Interesting from the viewpoint of space-constrained scenarios,
where reservoir size k < 1/λ.
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I Assume reservoir size k < 1/λ.

I Start with an empty reservoir.
I Replacement policy:

I Assume that before the nth point arrives the fraction reservoir
filled is F ∈ [0, 1].

I Insertion probability of the point n+ 1 is λ · k.
I Consider the reservoir is not full. Random generator with the

success probability of F (n) is used to decided if one of the
older points should be randomly chosen to be removed from
the reservoir.x
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Synopsis Structures for the Massive-Domain Scenario

I Bloom filter: Given a particular element, has it ever occurred
in the data stream?.

I Count-Min Sketch

I AMS Sketch

I FlajoletMartin Algorithm for Distinct Element Counting
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Frequent Pattern Mining in Data Streams

I Reservoir sampling and Sketches may be use to leverage
synopsis structure.

I Lossy Counting Algorithm
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Reservoir Sampling

I Maintain a reservoir sample S from the data stream.

I Apply a frequent pattern mining algorithm to the reservoir
sample S and report the patterns.

I The probability of a pattern being a false positive can be
determined by using the Chernoff bound

Theorem
Lower-Tail Chernoff Bound Let X be a random variable which
can be expressed as the sum of n independent binary random
variables, each takes on the value of 1 with probability pi. Then for
any δ ∈ (0, 1)

P (X < (1− δ)E[X]) < e
E[X]δ2

2
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Theorem
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Clustering Data Streams

I STREAM Algorithm: The core idea is to break the stream
into smaller memory-resident segments.

I CluStream Algorithm: Based on the idea of micro clustering.

I Massive Domain Stream Clustering
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Streaming Outlier Detection

I Outlier detection of individual records.

I Changes in the aggregate trends of the multidimensional data
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Streaming Classification

Impact of the concept drift makes the problem extremely
challenging.

I Very fast decision trees (VFDT).

I Supervised Microcluster Approach
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