Lecture 4
 Module I: Model Checking
 Topic: CTL Symbolic Model Checking

J.Vain
03.03.2022

Our Roadmap [based on McMillan et al. Llcs 90]

- Recall that

1. CTL temporal operators can be expressed using base operators EX, EG and EU;
2. the base operators can be expressed as fixpoints and can be computed iteratively;
3. explicit state notation can be transformed to symbolic notation by representing sets of states S and the transition relation R as Boolean logic formulas

- Then, fixpoint computation becomes formula manipulation, that includes:

1. pre-image (EX) computation and existentially bound variable elimination;
2. conjunction (intersection), disjunction (union), negation (set difference), and equivalence checks;
3. Using Binary Decision Diagrams (BDDs) as efficient data structure for computing truth values of boolean logic formulas.

Example: Mutual Exclusion Protocol (revisited)

Two concurrently executing processes are trying to enter their critical section without violating mutual exclusion condition

```
Process 1:
while (true)
    out: a := true; turn := true;
    wait: await (b = false or turn = false);
    Cs: a := false;
}
||
Process 2:
while (true) {
    out: b := true; turn := false;
    wait: await (a = false or turn=true);
    CS: b := false;
}
```


Encoding State Space S

- Encode the state space using only boolean variables
- We have two variables for program counters: pc1, pc2
with domains \{out, wait, cs\}
- We need two boolean variables per program counter to encode their 3 values: for pc1: pc_{0} and $\mathrm{pc}_{1} \quad$ for $\mathrm{pc} 2: \mathrm{pc}_{1}$ and $\mathrm{pc} 2_{1}$
- Encoding:

$$
\begin{array}{lll}
\mathrm{pc} 1 & =\text { out } & \longrightarrow
\end{array} \quad \begin{aligned}
& \neg \mathrm{pc} 1_{0} \wedge \neg \mathrm{pc} 1_{1} \\
& \mathrm{pc} 1
\end{aligned}=\mathrm{wait} \quad \longrightarrow \mathrm{p}
$$

- The other three variables turn, a, b are already booleans.

Encoding State Space S

- Each state can be written as a tuple of boolean variables:
- So, after encoding:

- We map boolean state vector to logic formula on variables $\mathrm{pc}_{0}, \mathrm{pc}_{1}, \mathrm{pc}_{0}, \mathrm{pc2}_{1}$, turn, a, b to represent state vector symbolically:
$\{(\mathrm{F}, \mathrm{F}, \mathrm{F}, \mathrm{F}, \mathrm{F}, \mathrm{F}, \mathrm{F})\} \mapsto \neg \mathrm{pc} 1_{0} \wedge \neg \mathrm{pc} 1_{1} \wedge \neg \mathrm{pc} 2_{0} \wedge \neg \mathrm{pc} 2_{1} \wedge \neg$ turn $\wedge \neg \mathrm{a} \wedge \neg \mathrm{b}$ $\{(\mathrm{F}, \mathrm{F}, \mathrm{T}, \mathrm{T}, \mathrm{F}, \mathrm{F}, \mathrm{T})\} \mapsto \neg \mathrm{pc} 1_{0} \wedge \neg \mathrm{pc} 1_{1} \wedge \mathrm{pc} 2_{0} \wedge \mathrm{pc} 2_{1} \wedge \neg$ turn $\wedge \neg \mathrm{a} \wedge \mathrm{b}$
and represent the set of states by disjoining individual state formulas:
$\{(F, F, F, F, F, F, F, F),(F, F, T, T, F, F, T)\} \mapsto$

$$
\begin{aligned}
& \neg \mathrm{pc} 1_{0} \wedge \neg \mathrm{pc}_{1} \wedge \neg \mathrm{pc} 2_{0} \wedge \neg \mathrm{pc} 2_{1} \wedge \neg \operatorname{turn} \wedge \neg \mathrm{a} \wedge \neg \mathrm{~b} \\
& \vee \neg \mathrm{pc}_{0} \wedge \neg \mathrm{pc}_{1} \wedge \mathrm{pc} 2_{0} \wedge \mathrm{pc}_{1} \wedge \neg \operatorname{turn} \wedge \neg \mathrm{a} \wedge \mathrm{~b} \\
& \equiv \neg \mathrm{pc} 1_{0} \wedge \neg \mathrm{pc}_{1} \wedge \neg \text { turn } \wedge \neg \mathrm{b} \wedge\left(\mathrm{pc} 2_{0} \wedge \mathrm{pc} 2_{1} \leftrightarrow \mathrm{~b}\right)
\end{aligned}
$$

Encoding Initial States

- We can also write the initial states as a boolean logic formuli
- recall that, initially: pc1=o and pc2=0
- but other variables may have any value in their domain In set notation:

$$
\begin{aligned}
& I \equiv\{(O, O, F, F, F), \quad(O, O, F, F, T), \quad(O, O, F, T, F) \text {, } \\
& (\mathrm{O}, \mathrm{O}, \mathrm{~F}, \mathrm{~T}, \mathrm{~T}),(\mathrm{O}, \mathrm{O}, \mathrm{~T}, \mathrm{~F}, \mathrm{~F}), \quad(\mathrm{O}, \mathrm{O}, \mathrm{~T}, \mathrm{~F}, \mathrm{~T}) \text {, } \\
& (0, \circ, T, T, F), \quad(0, \circ, T, T, T)\}
\end{aligned}
$$

mapping it to logic notation:
$\mapsto \neg \mathrm{pc}_{0} \wedge \neg \mathrm{pc}_{1} \wedge \neg \mathrm{pc} 2_{0} \wedge \neg \mathrm{pc} 2_{1}$
This logic formula tells that programm counters pc1 and pc2 are set to false and other variables may have arbitrary boolean values (they do not influence on the truth value of the formula)

Encoding the Transition Relation

- We use boolean logic formulas and primed variables to encode the transition relation R.
- So we use two sets of variables:
- Current state variables: $\mathrm{pc} 1_{0}, \mathrm{pc} 1_{1}, \mathrm{pc} 2_{0}, \mathrm{pc} 2_{1}$, turn, a, b
- Next state variables: $\mathrm{pc} 1_{0}{ }^{\prime}, \mathrm{pc} 1_{1}{ }^{\prime}, \mathrm{pc} 2_{0}{ }^{\prime}, \mathrm{pc} 2_{1}{ }^{\prime}, \mathrm{turn}, \mathrm{a}^{\prime}, \mathrm{b}^{\prime}$
- For example, we can write a boolean logic formula for the command of process 1:
cs: a := false;

Formula below describes the effect of executing command symbolically: Pgm. counter variables that change Data variable that changes
$\mathrm{pc}_{0} \wedge \mathrm{pc}_{1} \wedge \neg \mathrm{pc} 1_{0}{ }^{\prime} \wedge \neg \mathrm{pc} 1_{1}^{\prime} \wedge \sim \neg_{\neg \mathrm{a}^{\prime} \wedge}^{\prime}$
$\left(p c 2_{0}^{\prime} \leftrightarrow p c 2_{0}\right) \wedge\left(p c 2_{1}^{\prime} \leftrightarrow p c 2_{1}\right) \wedge\left(\right.$ turn' $\left.^{\prime} \leftrightarrow \operatorname{turn}\right) \wedge\left(\mathrm{b}^{\prime} \leftrightarrow b\right)$
Other data variables that do not change
Let's denote this formula with symbol $R_{1 c}$

Encoding the Transition Relation

- Similarly we can write a formula $R_{i j}$ for each command in the program
- Then the overall transition relation is is disjunction

$$
R \equiv R_{1 \mathrm{o}} \vee R_{1 \mathrm{w}} \vee R_{1 \mathrm{c}} \vee R_{2 \mathrm{o}} \vee R_{2 \mathrm{w}} \vee R_{2 \mathrm{c}}
$$

- Having the model M in symbolic form, we also need to know for symbolic model checking of CTL formula φ how to interprete the temporal operators of φ on this symbolic representation of M.

Symbolic Pre-Image Computation

- Recall the pre-image is a functional

EX : $2^{s} \rightarrow 2^{S}$
which is defined (in set notation) as:
$\operatorname{EX}(\varphi)=\left\{s \mid\left(s, s^{\prime}\right) \in \llbracket R \rrbracket\right.$ and $\left.s^{\prime} \in \llbracket \varphi \rrbracket\right\}$

- We can represent pre-image symbolically as usual 1st order logic formula

$$
\operatorname{EX}(\varphi) \equiv \exists V^{\prime}\left(R \wedge \varphi\left[V^{\prime} / V\right]\right)
$$

where

- V : values of Boolean state variables in the current-state
- V^{\prime} : values of Boolean state variables in the next-state
- $\varphi\left[V^{\prime} / V\right]$: renaming variables in φ by replacing current-state variables with the corresponding next-state variables
- $\exists V^{\prime} f$: means existentially quantifying variables V^{\prime} in f
- R denotes the symbolic formula of transition relation

Renaming (or substitution)

Example:

- Assume that we have two variables x, y
- and sets $V=\{x, y\}$ and $V^{\prime}=\left\{x^{\prime}, y^{\prime}\right\}$
- Renaming example:

Given formula $\varphi \equiv x \wedge y$, we apply variable substitution $\left[V^{\prime} / V\right]$ to variables in formula φ :

$$
\varphi\left[V^{\prime} / V\right] \equiv(x \wedge y)\left[V^{\prime} / V\right] \equiv x^{\prime} \wedge y^{\prime}
$$

Note: for correct substitution the order of variables must be fixed in V^{\prime} and V

Existential Quantifier Elimination

- Given a boolean formula f and variable v we can rewrite quantified formula as

$$
\begin{equation*}
\exists v f \equiv f[\text { true } / v] \vee f[\text { false } / v] \tag{*}
\end{equation*}
$$

Here, we eliminate the existential quantifier by doing following:

- first, substitute the existentially bound variable v with true in the formula f
- then substitute v with false in f and
- then take the disjunction of two results.
- Example: Let the transition relation conjoined with φ be $f \equiv \neg x \wedge y \wedge x^{\prime} \wedge y^{\prime}$ The pre-image of f according to $\left(^{*}\right)$ is

$$
\begin{aligned}
& \exists V^{\prime} f \equiv \exists x^{\prime}\left(\exists y^{\prime}\left(\neg x \wedge y \wedge x^{\prime} \wedge y^{\prime}\right)\right) \quad \% \text { after applying }\left(^{*}\right) \text { to } \exists y^{\prime} \text { we get } \\
& \equiv \exists x^{\prime}\left(\left(\neg x \wedge y \wedge x^{\prime} \wedge y^{\prime}\right)\left[\text { truely } y^{\prime}\right] \vee\left(\neg x \wedge y \wedge x^{\prime} \wedge y^{\prime}\right)\left[\text { falsely } y^{\prime}\right]\right) \\
& \equiv \exists x^{\prime}\left(\neg x \wedge y \wedge x^{\prime} \wedge \text { true } \vee \neg x \wedge y \wedge x^{\prime} \wedge \text { false }\right) \equiv \exists x^{\prime}\left(\neg x \wedge y \wedge x^{\prime}\right) \\
& \left.\equiv\left(\neg x \wedge y \wedge x^{\prime}\right)\left[\text { true } x x^{\prime}\right] \vee\left(\neg x \wedge y \wedge x^{\prime}\right)\left[\text { falsel } x^{\prime}\right]\right) \\
& \equiv \neg x \wedge y \wedge \text { true } \vee \neg x \wedge y \wedge \text { fatse } \\
& \equiv \neg x \wedge y
\end{aligned}
$$

An Extremely Simple Example

Variables: x, y : boolean
Set of explicit states:

$$
S=\{(\mathrm{F}, \mathrm{~F}),(\mathrm{F}, \mathrm{~T}),(\mathrm{T}, \mathrm{~F}),(\mathrm{T}, \mathrm{~T})\}
$$

Set of states symbolically:

$$
S \equiv \text { true }
$$

Initial state condition:

$$
I \equiv \neg x \wedge \neg y
$$

Transition relation (after simplification):

$$
R \equiv x^{\prime}=\neg x \wedge y^{\prime}=y \vee x^{\prime}=x \wedge y^{\prime}=\neg y
$$

("ミ" means "by definition")

An Extremely Simple Example - EX $\boldsymbol{\varphi}$

- Given $\varphi \equiv x \wedge y$ and $R \equiv x^{\prime}=\neg x \wedge y^{\prime}=y \vee x^{\prime}=x \wedge y^{\prime}=\neg y$
- Compute EX(φ)

The states in pre-image
$\operatorname{EX}(x \wedge y) \equiv \neg x \wedge y \vee x \wedge \neg y$, are denoted with purple in KS diagram. In terms of explicit states $\operatorname{EX}(\{(T, T)\}) \equiv\{(\mathrm{F}, \mathrm{T}),(\mathrm{T}, \mathrm{F})\}$

An Extremely Simple Example -EF φ

Let's compute $\mathrm{EF}(x \wedge y)$ on model M by applying fixpoint algorithm (see Lecture 4).

The fixpoint computation sequence provides symbolic values:
false, $x \wedge y, x \wedge y \vee \operatorname{EX}(x \wedge y), x \wedge y \vee \operatorname{EX}(x \wedge y \vee \operatorname{EX}(x \wedge y)), \ldots$

If we do the EX computation iteratively, we get a sequence of symbolic states:
Result: $\underbrace{\text { false },}_{0} \underbrace{x \wedge y}_{1}, \underbrace{x \wedge y \vee \neg x \wedge y \vee x \wedge \neg y,}_{2} \underbrace{\text { true }}_{3}$
$\mathrm{EF}(x \wedge y) \equiv$ true (means full state space)
In terms of explicit states $\operatorname{EF}(\{(\mathrm{T}, \mathrm{T})\}) \equiv\{(\mathrm{F}, \mathrm{F}),(\mathrm{F}, \mathrm{T}),(\mathrm{T}, \mathrm{F}),(\mathrm{T}, \mathrm{T})\}$

An Extremely Simple Example

- Based on our results, shown on example transition system $T=(S, I, R)$ we saw that
- If inital states I satisfy $\operatorname{EF}(x \wedge y)$, i.e.

$$
I \subseteq \mathrm{EF}(x \wedge y)(\subseteq \text { corresponds to implication })
$$

then:

$$
T \vDash \mathrm{EF}(x \wedge y)
$$

i.e., there exists a path from the initial state s.t. eventually x and y become true in the same state

- In the first example, since

$$
I \nsubseteq \operatorname{EX}(x \wedge y)
$$

then:

$$
T \not \equiv \mathrm{EX}(x \wedge y) \quad \text { Property is not satisfied in } T
$$

i.e., there is not a path from the initial state such that in the next state of path both x and y become true.

An Extremely Simple Example - AF $\boldsymbol{\varphi}$

- Let's try one more property $\operatorname{AF}(x \wedge y)$
- To check this property we first convert it to a formula which uses only temporal operators in our basis:

$$
\operatorname{AF}(x \wedge y) \equiv \neg \operatorname{EG}(\neg(x \wedge y))
$$

i.e.,
if we can find such a initial state which satisfies $\operatorname{EG}(\neg(x \wedge y))$, then we know that the transition system T does not satisfy property

$$
\operatorname{AF}(x \wedge y)
$$

An Extremely Simple Example

 Let's compute EG $(\neg(x \wedge y))$The fixpoint computation sequence is:

$$
\text { true, } \quad \neg x \vee \neg y, \quad(\neg x \vee \neg y) \wedge \operatorname{EX}(\neg x \vee \neg y), \ldots
$$

If we do the EX computations, we get:

i.e.

$$
\operatorname{EG}(\neg(x \wedge y)) \equiv \neg x \vee \neg y
$$

Since

$$
I \cap \operatorname{EG}(\neg(x \wedge y)) \neq \varnothing
$$

we conclude that $T \nRightarrow \operatorname{AF}(x \wedge y)$

Symbolic CTL Model Checking Algorithm (in general)

- Translate the formula to a formula which uses the CTL basis
- $\mathrm{EX} \varphi, \mathrm{EG} \varphi, \varphi \mathrm{EU} \psi$
- Atomic propositions can be interpreted in states by inspecting whether the formula is in the set AP of given state labels.
- For $\operatorname{EX} \varphi$ compute the pre-image using existential variable elimination
- For $\operatorname{EG} \varphi$ and $\operatorname{EU} \varphi$ compute the fixpoints iteratively

Symbolic Model Checking Algorithm (1)

Check (f : CTL formula) :
(here we use logic encoding of sets of states)
case: $f \in A P$ return f;
case: $\mathrm{f} \equiv \neg \varphi \quad$ return $\neg \operatorname{Check}(\varphi)$;
case: $f \equiv \varphi \wedge \psi \quad$ return $\operatorname{Check}(\varphi) \wedge \operatorname{Check}(\psi) ;$
case: $f \equiv \varphi \vee \psi \quad$ return $\operatorname{Check}(\varphi) \vee \operatorname{Check}(\psi)$;
case: $\mathbf{f} \equiv \operatorname{EX} \varphi$ return $\exists \mathrm{V}^{\prime} . \mathrm{R} \wedge \operatorname{Check}(\varphi)\left[\mathrm{V}^{\prime} / \mathrm{V}\right]$;

Symbolic Model Checking Algorithm (2)

Check(f)

```
case: \(\mathbf{f} \equiv \mathrm{EG} \varphi\)
    \(\mathrm{Y}:=\) true; \(\quad / /\) initializing Y (includes all states)
    \(\mathrm{P}:=\operatorname{Check}(\varphi) ; \quad / / \mathrm{P}\) - set of states where \(\varphi\) is true
    Y':= P \(\wedge\) Check(EX(Y));
    while ( \(Y \neq Y^{\prime}\) ) // fixpoint condition
    \{
        \(\mathrm{Y} \quad:=\mathrm{Y}^{\prime} ; \quad / /\) save previous step result
    \(Y^{\prime}:=P \wedge\) Check(EX(Y)); // find pre-image
\}
return Y ; //Y-set of states where EG \(\varphi\) is true
```


Symbolic Model Checking Algorithm (3)

Check(f)

```
case: f \equiv\varphi EU \psi
    Y := false; // (empty set)
    P := Check ( }\varphi)\mathrm{ ; // P-set of states where }\varphi\mathrm{ is true
    Q := Check (\psi); // Q-set of states where }\psi\mathrm{ is true
    Y' := Q \vee [P ^ Check(EX(Y))]; // here Y'= Q
    while (Y # Y')
    {
        Y := Y'; P-states from which states of Y are 1 step reachable
        Y'}:=Q\vee['P^Check(EX(Y))]
    }
    return Y;
```


Binary Decision Diagrams (BDDs)

- Binary Decision Diagrams (BDDs)
- An efficient data structure for boolean formula manipulation.
- There are BDD packages available, e.g. https://github.com/johnyf/tool lists/blob/master/bdd.md
- BDD data structure can be used to implement symbolic model checking algorithms discussed above because predicate transformers include boolean connectives.
- BDDs are canonical representation for boolean logic formulas, i.e.
- given formulas F and G, they are $F \Leftrightarrow G$ if their BDD representations are identical.

Binary Decision Trees (BDT)

- Fix the order of variables in the boolean formula,
- Build a tree where in each branch of the same level the node is labeled with same variable and
- Outgoing edges from node are labeled with possible values of this variable
- Examples of BDT-s for boolean formulas of two variables:

Variable order: x, y

Transforming BDT to BDD

- BDT has a lot of overhead and can be optimized to more compact form of directed acyclic graph - binary decision diagram (BDD).
- Method:
- Repeatedly apply the following transformations to a BDT:
- Remove duplicate terminals
- redraw connections to remaining terminal nodes that have same label as deleted ones
- Remove duplicate non-terminals
- redraw connections to remaining non-terminal nodes that have same label as deleted ones
- Remove redundant tests

Mapping Binary Decision Trees to BDDs

false

F

- redundant node

Good News About BDDs

- Given BDDs for two boolean logic formulas φ and ψ,
- the BDDs for $\varphi \wedge \psi$ and $\varphi \vee \psi$ are of size $|\varphi| \times|\psi|$ (and can be computed in that time)
- the BDD for $\neg \varphi$ is of size $|\varphi|$ (and can be computed in that time)
- Equivalence $\varphi \stackrel{?}{\Leftrightarrow} \psi$ can be checked in constant time
- Satisfiability of φ can be checked in constant time

Bad News About BDDs

- The size of a BDD can be exponential in the number of boolean variables
- The sizes of the BDDs are very sensitive to the ordering of variables. Bad variable ordering can cause exponential increase in the size of the BDD
- There are functions which have BDDs that are exponential for any variable ordering (for example binary multiplication)
- Pre-image computation requires existential variable elimination
- Existential variable elimination can cause an exponential blow-up in the size of the BDD

BDDs are Sensitive to Variables Order

Identity relation for two variables: $\left(\mathrm{x}^{\prime} \leftrightarrow \mathrm{x}\right) \wedge\left(\mathrm{y}^{\prime} \leftrightarrow \mathrm{y}\right)$

Variable order: x, x ', y, y '

For n variables we have $3 \mathrm{n}+2$ nodes

Variable order: $\mathrm{x}, \mathrm{y}, \mathrm{x}$ ', y '

For n variables we have $3 \times 2^{\mathrm{n}}-1$ nodes

LTL and CTL* Model Checking complexity?

- The complexity of the model checking problem for LTL and CTL* is:
- $(|S|+|R|) \times 2^{\mathrm{O}(f)}$ where $|f|$ is the number of logic connectives in f.
- Typically the size of the formula is much smaller than the size of the transition system
- So the exponential complexity in the size of the formula is not very critical in practice, the property specifications typically involve few variables and logic operators.

