Hybrid Systems, Lecture 5: Hybrid Automata

S. Nõmm

¹Department of Computer Science, Tallinn University of Technology

17.03.2015

Hybrid Automaton

- A hybrid automaton is a formal model of a hybrid system.
- A hybrid automaton is a transition system that is extended with continuous dynamics.
- ► Formally: A hybrid Automaton is a tuple
 - H = (Q, V, Init, f, D, G, R, E, where
 - ▶ Q = q₁,..., q_k is a finite set of discrete states (control locations);
 - $X = (x_1, \dots, x_n)$ is a finite set of continuous variables;
 - $f: Q \times \mathbb{R}^n \to \mathbb{R}^n$ is an activity function;
 - $Init \subset Q \times \mathbb{R}^n$ is the set of initial states;
 - $D: Q \to 2\mathbb{R}^n$ invariants of the locations (domains);
 - $E \subseteq Q \times Q$ is the transition relation;
 - $G: E \to 2^{\mathbb{R}^n}$ is is the guard condition;
 - $R: E \to 2^{\mathbb{R}^n} \times 2^{\mathbb{R}^n}$ is the reset map;

This definition does not take into account synchronization labels.

Read and explain why.

Solution of Hybrid Automaton

A solution $\mathcal{X} = (\tau, q, x)$ of the hybrid automaton H consists of

- Time trajectory τ a time line where solution is defined
- State trajectory (q, x) -state evolution of the hybrid automaton defined on τ

A sequence of time intervals

$$\tau = \{I_i\}_{i=0}^N$$

such that

•
$$I_i = [\tau_i, \tau'_i]$$
 $\forall i < N$ where $\tau_i \le \tau'_i = \tau_{i+1}$;
• If $N < \infty \Rightarrow (I_N = [\tau_N, \tau'_N]) \wedge (I_N = [\tau_N, \tau'_N))$

Explain last phrase.

Solution $\mathcal{X} = (\tau, q, x)$

$$\tau = \{I_i\}_{i=0}^N, \quad q: \langle \tau \rangle \to Q, \quad x = \{x^i : i \in \langle \tau \rangle\}, \quad x^i: I_i \to X$$

such that:

- Initialization $(q(0), x^0(0)) \in Init;$
- ► Time driven $\forall t \in [\tau_i, \tau'_i)$, $\dot{x}^i(t) = f(q(i), x^i(t))$ and $x^i(t) \in D(q(i))$
- ► Event driven $\forall i \in \langle \tau \rangle \setminus N$, $e = (q(i), q(i+1)) \in E$, $x^i(\tau'_i) \in G(e)$ and $x^{i+1}(\tau_{i+1}) \in R(e, x^i(\tau'_i))$

Transition Relation for Hybrid Automaton

- To each discrete state $q \in Q$ associate a differential equation $\dot{x} = f_q(x)$.
- ▶ To each generator *g* linked to an edge $e \in Q \times Q$ associate a guard $G : Q \times Q \rightarrow 2^{\mathbb{R}^n}$
- Transition relation consists of two parts:
 - Time driven $(q, x) \rightarrow (q, y)$, Should something be added here?
 - ▶ Event driven $(q, x) \rightarrow (q, y')$, Should something be added here?

Properties of Hybrid Automata

- Liveness For all (q₀, x₀) ∈ Init, there exists at least one (infinite) solution from (q₀, x₀);
- ▶ Determinism For all (q₀, x₀) ∈ Init, there exists at most one solution starting from (q₀, x₀);
- Zenoness Finite execution time

$$\tau_{\infty} = \sum_{i=1}^{\infty} (\tau_i - \tau'_i) < \infty;$$

- Stability of equilibria and other invariant sets;
- Reachability states Reach $\in Q \times X$;

Zeno of Elea (490 – 430 B.C.)

- Born in southern Italy
- Met Socrates in Athens 449 B.C.
- Went back to Elea and into politics
- Tortured to death
- Paradoxes proved that motion and time are illusions
- Led to mathematical problems not solved until 19th century

Zeno

- A solution is Zeno if it exhibits infinitely many discrete jumps in finite time.
- Zeno is a truly hybrid phenomenon: it cannot be formulated for a purely discrete system without the notion of continuous time.
- Zeno is due to that the model does not reflect reality with sufficient detail.
- ► A hybrid automaton has Zeno solutions only if (Q, E) is a cyclic graph.
- The convergence point of a Zeno solution is denoted Zeno state.
- Zeno states lie on the intersection of guards.

Let $\Omega_q, q = 1, \ldots, m$ denote a partition of the continuous state space \mathbb{R}^n .

A switched system is then defined as

$$\dot{x} = f_q(x), \quad x \in \Omega_q$$

Switched System as Hybrid Automaton

$$\dot{x} = f_q(x), \quad x \in \Omega_q$$

corresponds to the hybrid automaton

•
$$Q = \{1, \ldots, m\}$$
 , $X = \mathbb{R}^n$, Ini $t \in \{q\} imes \Omega_q$

•
$$f(q,x) = f_q(x);$$

•
$$D(q) = \Omega_q;$$

▶ $(q,q') \in E$ if D(q) to D(q') such that $D(q) \cup D(q') \neq \emptyset$

•
$$G(q,q') = D(\overline{q}) \cup D(\overline{q'})$$

$$\blacktriangleright R(q,q',x) = x$$

Example 1: Bouncing ball

Free fall:
$$\ddot{y} = -g$$

Collision:

$$y^+(t) = y^-(t) = 0$$

 $\dot{y}^+(t) = -c\dot{y}^-(t)$

 $c \in [0,1]$ energy reflected at impact. item

$$\begin{array}{rcl} \dot{x}_1 &=& x_2 \\ \dot{x}_2 &=& -g \end{array}$$

Example 2: Thermostat

Goal: is to keep temperature about 22 degrees.

- ▶ $\dot{x} = -x + 25$
- Event based control

Tank system

Goal is to prevent the tank from emptying or filling up.

- ▶ λ pump-on inflow, μ constant outflow, δ delay between sending and executing pump command;
- Pump off $\dot{y} = -mu$
- Wait to On

$$\dot{y} = -\mu$$

 $\dot{ au} = 1$

• Pump On $\dot{y} = \lambda - \mu$

Wait to Off

$$\dot{y} = \lambda - \mu$$

 $\dot{\tau} = 1$

Example 3:Switched server

Parts are incoming through the n buffers.

- $\delta_{i,j}$ is the set up time required to move from budder *i* to *j*
- Algorithm:
 - Start with budder 1
 - Work on a buffer until empty
 - when budder j is empty move to the buffer $j + 3 \mid n$

Server system with congestion control

- r -incoming rate, q_{max} is the maximum of element allowed B- bandwidth, rate of service
- Additive/multiplicateive increase of r while q < q_{max}
- $q \ge q_{max}$ multiply by $\gamma \in (0,1)$
- $\dot{q} = r B$ and $\dot{r} = 1$