Hybrid Systems, Lecture 5: Hybrid Automata

S. Nõmm
${ }^{1}$ Department of Computer Science, Tallinn University of Technology

17.03.2015

Hybrid Automaton

- A hybrid automaton is a formal model of a hybrid system.
- A hybrid automaton is a transition system that is extended with continuous dynamics.
- Formally: A hybrid Automaton is a tuple $H=(Q, V$, Init, f, D, G, R, E, where
- $Q=q_{1}, \ldots, q_{k}$ - is a finite set of discrete states (control locations);
- $X=\left(x_{1}, \ldots x_{n}\right)$ - is a finite set of continuous variables;
- $f: Q \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ - is an activity function;
- Init $\subset Q \times \mathbb{R}^{n}$ - is the set of initial states;
- $D: Q \rightarrow 2 \mathbb{R}^{n}$ - invariants of the locations (domains);
- $E \subseteq Q \times Q$ - is the transition relation;
- $G: E \rightarrow 2^{\mathbb{R}^{n}}$ - is is the guard condition;
- $R: E \rightarrow 2^{\mathbb{R}^{n}} \times 2^{\mathbb{R}^{n}}$ - is the reset map;

This definition does not take into account synchronization labels.

Read and explain why.

Solution of Hybrid Automaton

A solution $\mathcal{X}=(\tau, q, x)$ of the hybrid automaton H consists of

- Time trajectory τ - a time line where solution is defined
- State trajectory (q, x)-state evolution of the hybrid automaton defined on τ

Time trajectory τ

A sequence of time intervals

$$
\tau=\left\{I_{i}\right\}_{i=0}^{N}
$$

such that

- $I_{i}=\left[\tau_{i}, \tau_{i}^{\prime}\right] \quad \forall i<N$ where $\tau_{i} \leq \tau_{i}^{\prime}=\tau_{i+1}$;
- If $N<\infty \Rightarrow\left(I_{N}=\left[\tau_{N}, \tau_{N}^{\prime}\right]\right) \bigwedge\left(I_{N}=\left[\tau_{N}, \tau_{N}^{\prime}\right)\right)$

Explain last phrase.

Solution $\mathcal{X}=(\tau, q, x)$

$$
\tau=\left\{I_{i}\right\}_{i=0}^{N}, \quad q:\langle\tau\rangle \rightarrow Q, \quad x=\left\{x^{i}: i \in\langle\tau\rangle\right\}, \quad x^{i}: I_{i} \rightarrow X
$$

such that:

- Initialization $\left(q(0), x^{0}(0)\right) \in$ Init;
- Time driven $\forall t \in\left[\tau_{i}, \tau_{i}^{\prime}\right), \quad \dot{x}^{i}(t)=f\left(q(i), x^{i}(t)\right)$ and $x^{i}(t) \in D(q(i))$
- Event driven $\forall i \in\langle\tau\rangle \backslash N, e=(q(i), q(i+1)) \in E$, $x^{i}\left(\tau_{i}^{\prime}\right) \in G(e)$ and $x^{i+1}\left(\tau_{i+1}\right) \in R\left(e, x^{i}\left(\tau_{i}^{\prime}\right)\right)$

Transition Relation for Hybrid Automaton

- To each discrete state $q \in Q$ associate a differential equation $\dot{x}=f_{q}(x)$.
- To each generator g linked to an edge $e \in Q \times Q$ associate a guard $G: Q \times Q \rightarrow 2^{\mathbb{R}^{n}}$
- Transition relation consists of two parts:
- Time driven $(q, x) \rightarrow(q, y)$, Should something be added here?
- Event driven $(q, x) \rightarrow\left(q, y^{\prime}\right)$, Should something be added here?

Properties of Hybrid Automata

- Liveness For all $\left(q_{0}, x_{0}\right) \in$ Init, there exists at least one (infinite) solution from $\left(q_{0}, x_{0}\right)$;
- Determinism For all $\left(q_{0}, x_{0}\right) \in I n i t$, there exists at most one solution starting from $\left(q_{0}, x_{0}\right)$;
- Zenoness Finite execution time

$$
\tau_{\infty}=\sum_{i=1}^{\infty}\left(\tau_{i}-\tau_{i}^{\prime}\right)<\infty
$$

- Stability of equilibria and other invariant sets;
- Reachability states Reach $\in Q \times X$;

Zeno of Elea (490 - 430 B.C.)

- Born in southern Italy
- Met Socrates in Athens 449 B.C.
- Went back to Elea and into politics
- Tortured to death
- Paradoxes proved that motion and time are illusions
- Led to mathematical problems not solved until 19th century

Zeno

- A solution is Zeno if it exhibits infinitely many discrete jumps in finite time.
- Zeno is a truly hybrid phenomenon: it cannot be formulated for a purely discrete system without the notion of continuous time.
- Zeno is due to that the model does not reflect reality with sufficient detail.
- A hybrid automaton has Zeno solutions only if (Q, E) is a cyclic graph.
- The convergence point of a Zeno solution is denoted Zeno state.
- Zeno states lie on the intersection of guards.

Switched systems

Let $\Omega_{q}, q=1, \ldots, m$ denote a partition of the continuous state space \mathbb{R}^{n}.
A switched system is then defined as

$$
\dot{x}=f_{q}(x), \quad x \in \Omega_{q}
$$

Switched System as Hybrid Automaton

$$
\dot{x}=f_{q}(x), \quad x \in \Omega_{q}
$$

corresponds to the hybrid automaton

- $Q=\{1, \ldots, m\}, X=\mathbb{R}^{n}$, Init $\in\{q\} \times \Omega_{q}$
- $f(q, x)=f_{q}(x)$;
- $D(q)=\Omega_{q}$;
- $\left(q, q^{\prime}\right) \in E$ if $D(q)$ to $D\left(q^{\prime}\right)$ such that $\overline{D(q)} \cup D\left(q^{\prime}\right) \neq \emptyset$
- $G\left(q, q^{\prime}\right)=\overline{D(q)} \cup D \overline{\left(q^{\prime}\right)}$
- $R\left(q, q^{\prime}, x\right)=x$

Example 1: Bouncing ball

- Free fall: $\ddot{y}=-g$
- Collision:

$$
\begin{aligned}
y^{+}(t) & =y^{-}(t)=0 \\
\dot{y}^{+}(t) & =-c \dot{y}^{-}(t)
\end{aligned}
$$

$c \in[0,1]$ energy reflected at impact. item

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-g
\end{aligned}
$$

Example 2: Thermostat

Goal: is to keep temperature about 22 degrees.

- $\dot{x}=-x+18$
- $\dot{x}=-x+25$
- Event based control

Tank system

Goal is to prevent the tank from emptying or filling up.

- λ - pump-on inflow, μ - constant outflow, δ - delay between sending and executing pump command;
- Pump off $\dot{y}=-m u$
- Wait to On

$$
\begin{aligned}
\dot{y} & =-\mu \\
\dot{\tau} & =1
\end{aligned}
$$

- Pump On $\dot{y}=\lambda-\mu$
- Wait to Off

$$
\begin{aligned}
\dot{y} & =\lambda-\mu \\
\dot{\tau} & =1
\end{aligned}
$$

Example 3:Switched server

Parts are incoming through the n buffers.

- $\delta_{i, j}$ - is the set up time required to move from budder i to j
- Algorithm:
- Start with budder 1
- Work on a buffer until empty
- when budder j is empty move to the buffer $j+3 \mid n$

Server system with congestion control

- r-incoming rate, $q_{\text {max }}$ - is the maximum of element allowed B - bandwidth, rate of service
- Additive/multiplicateive increase of r while $q<q_{\text {max }}$
- $q \geq q_{\text {max }}$ multiply by $\gamma \in(0,1)$
- $\dot{q}=r-B$ and $\dot{r}=1$

