Lecture 10

Constraint Logic Programming ITIo021

Definitions

- Constraint programming (CP) is a declarative formalism that lets you describe conditions a solution must satisfy.
- CP can be used to model and solve various combinatorial problems such as
- planning,
- scheduling
- allocation of tasks.

CLP in SWI-Prolog

- library(clpfd): Constraint Logic Programming over Finite Domains
- library(clpr): Constraint Logic Programming over Rationals and Reals ${ }^{1}$
${ }^{1}$ - library must be loaded explicitly before using it:
:- use_module(library(clpq)).

Constraint Logic Programming over

 Finite Domains (clpfd)- Predicates of clpfd are
- finite domain constraints, which are relations over integers.
- generalise arithmetic evaluation of integer expressions in that propagation can proceed in all directions.
- Enumeration predicates let systematically search for solutions on variables whose domains are finite.

Finite domain expressions

an integer
a variable
-Expr
Expr + Expr
Expr * Expr
Expr-Expr
$\min ($ Expr,Expr $)$
$\max ($ Expr,Expr $)$

Expr mod Expr abs(Expr)
Expr / Expr

- Given value
- Unknown value
- Unary minus
- Addition
- Multiplication
- Subtraction
- Minimum of two expressions
- Maximum of two expressions
- Remainder of integer division
- Absolute value
- Integer division

Finite domain constraints

Exprı \#>= Expr2 Exprı is larger than or equal to Expr2
Exprı \#=< Expr2 Exprı is smaller than or equal to Expr2
Exprı \#= Expr2 Exprı equals Expr2
Exprı \#\= Expr2 Exprı is not equal to Expr2
Exprı \#> Expr2
Exprı \#< Expr2 Expr1 is strictly smaller than Expr2

The constraints in $/ 2, \#=/ 2, \# \backslash=/ 2, \#</ 2, \#>/ 2, \#=</ 2$, and $\#>=/ 2$ can be reified, which means reflecting their truth values by integers o and 1.

Reifiable constraints and Boolean

 variablesLet P and Q denote reifiable constraints, then
$\# \backslash Q$
$\mathrm{P} \# \backslash / \mathrm{Q}$
P \#/ Q
P \#<==> Q
P \#==> Q
P \#<== Q

True iff Q is false
True iff either P or Q
True iff both P and Q
True iff P and Q are equivalent
True iff P implies Q
True iff Q implies P

Example

?- [library(clpfd)].
?- X \#> 3.
X in 4..sup.
?- $\mathrm{X} \# \backslash=20$.
X in inf..19 $\backslash / 21 .$. sup.
?- $2^{*} \mathrm{X} \#=10$.
$\mathrm{X}=5$.
?- $\mathrm{X}^{*} \mathrm{X} \#=144$.
X in -12 $\backslash / 12$.

Example

?- $4^{*} X+2 * Y$ \# $24, \mathrm{X}+\mathrm{Y} \#=9,[\mathrm{X}, \mathrm{Y}]$ ins o..sup.
$\mathrm{X}=3$,
$Y=6$.
?- Vs = [X,Y,Z], Vs ins 1..3, all_different(Vs), $\mathrm{X}=1, \mathrm{Y} \# \backslash=2$.
$\mathrm{Vs}=[1,3,2]$,
$\mathrm{X}=1$,
$\mathrm{Y}=3$,
$Z=2$.
?- X \#= Y \#<==> B, X in $0 . .3$, Y in $4 . .5$.
$\mathrm{B}=\mathrm{o}$,
X in $0 . .3$,
Y in $4 . .5$.

Usage of CLP

- Common scenario:

1. Post the desired constraints among the variables of a model
2. use enumeration predicates to search for solutions.

Example of constraint satisfaction problem:
cryptoarithmetic puzzle SEND + MORE = MONEY,

- where different letters denote distinct integers between o and 9.

Example (continues)

Modeling SEND + MORE $=$ MONEY in CLP(FD):
:- use_module(library(clpfd)).

```
puzzle([S,E,N,D] + [M,O,R,E] = [M,O,N,E,Y]) :-
    Vars = [S,E,N,D,M,O,R,Y],
    Vars ins o..9,
    all_different(Vars),
        S*1000 + E* 100 + N* }10+D
        M*}1000+\mp@subsup{O}{}{*}100+\mp@subsup{R}{}{*}10+
```

 \#=
 \(\mathrm{M}^{*} 10000+\mathrm{O}^{*} 1000+\mathrm{N}^{*} 100+\mathrm{E}^{*} 10+\mathrm{Y}\),
 \(\mathrm{M} \# \mid=\mathrm{o}, \mathrm{S} \# \backslash=\mathrm{o}\).
 \% largest decimal places cannot be o-s

Example (continues)

- Sample query and its result:
?- puzzle(As+Bs=Cs).
As = [9, _G10107, _Gio110, _Gio113],
Bs = [1, o, _G10128, _G10107],
Cs = [1, o, _G10110, _G10107, _G10152],
_G10107 in 4..7,
1000*9+91*_G10107+-90*_G1011O+_G10113+ -9000*1+ -900*O+10*_G10128+ -1*_G10152\#=0, all_different([_G10107,_G10110, _G10113, _G10128, _G10152, o, 1, 9]),
_Giono in 5..8,
_Giou13 in 2..8,
_Gio128 in 2..8,
_Gio152 in 2..8.

Example (continues)

- Constraint solver deduces bounds for all variables.
- Keeping the modeling part separate from the search allows more easily experiment with different search strategies.
- Labeling can then be used to search for solutions:

Example

?- puzzle(As+Bs=Cs), label(As).

As $=[9,5,6,7]$,
Bs $=[1,0,8,5]$,
$\mathrm{Cs}=[1,0,6,5,2]$;
false.
\% label(As) - trying out values for the finite domain variables

Variable domain constraints

?Var in +Domain

Var is an element of Domain where the Domain is one of:

- Integer

Singleton set consisting only of Integer.

- Lower .. Upper

All integers I such that Lower $=<\mathrm{I}=<$ Upper. Lower must be an integer or the atom inf, which denotes negative infinity. Upper must be an integer or the atom sup, which denotes positive infinity.

- Domainı $\backslash /$ Domain2

The union of Domainı and Domainz.

Variable domain constraints

+Vars ins + Domain

- The variables in the list Vars are elements of Domain. indomain(?Var)
- Bind Var to all feasible values of its domain on backtracking.
- The domain of Var must be finite.

Labeling

labeling(+Options, +Vars)

- Labeling means systematically trying out values for the finite domain variables Vars until all of them are ground.
- The domain of each variable in Vars must be finite.
- +Options is a list of options that exhibits some control over the search process.
- Several categories of options exist

Labeling strategy options

leftmost - Label the variables in the order they occur in Vars (that is default)
ff - first fail. Label the leftmost variable with smallest domain next, in order to detect infeasibility early. This is often a good strategy.
ffc - label the variables with smallest domains, the leftmost one participating in most constraints is labeled next.
min - label the leftmost variable next,whose lower bound is the lowest.
max - label the leftmost variable next, whose upper bound is the highest.

Labeling strategy options (cont.)

The value order is one of:
up - try the elements of the chosen variable's domain in ascending order. This is default.
down - try the domain elements in descending order.

Labeling strategy options (cont.)

The branching strategy options:
step - for each variable X , a choice is made between $\mathrm{X}=\mathrm{V}$ and $\mathrm{X} \# \backslash=\mathrm{V}$, where V is determined by the value ordering options (default).
enum - for each variable X , a choice is made between $\mathrm{X}=\mathrm{V} _1, \mathrm{X}=\mathrm{V} _2$..., for all values V_i of the domain of X .
The order is determined by the value ordering options.
bisect - for each variable X , a choice is made between $\mathrm{X} \#=<\mathrm{M}$ and X \#> M , where M is the midpoint of the domain of X.

At most one option of each category can be specified, and an option must not occur repeatedly.

Labeling strategy options (cont.)

The order of solutions option:
$\min (\mathbf{E x p r})$ - generates solutions in ascending order w.r.t. the evaluation of the arithmetic expression Expr
$\boldsymbol{m a x}(\mathbf{E x p r})$ - generates solutions in descending order

- Labeling Vars must make Expr ground.
- If several options are specified, they are interpreted from left to right.

Labeling strategy options (cont.)

- Example:
?-[X,Y] ins 10..20, labeling([max(X), min(Y)],[X,Y]).
- This generates solutions in descending order of X
- But for each binding of X , solutions are generated in ascending order of Y .

Other labeling options

all_different(+Vars) -
all variables have pairwise distinct values
sum(+Vars, +Rel, ?Expr) -
The sum of elements of the list Vars is in relation Rel to Expr.
For example:
?- $[\mathrm{A}, \mathrm{B}, \mathrm{C}]$ ins o..sup, $\operatorname{sum}([\mathrm{A}, \mathrm{B}, \mathrm{C}], \#=, 100)$.
A in o..100,
$A+B+C \#=100$,
B in o..ıoo,
C_in_o..10o.

Other labeling options

scalar_product(+Cs, +Vs, +Rel, ?Expr)

- Cs is a list of integer constants,
- Vs is a list of variables and integers.
- True if the scalar product of Cs and Vs is in relation Rel to Expr.
- Example:
- Scalar_product([4,5], [A,B], >, A-B).

Sudoku

```
sudoku(Rows) :-
    length(Rows, 9), maplist(length_(9), Rows),
    append(Rows, Vs), Vs ins 1..9,
    maplist(all_distinct, Rows),
    transpose(Rows, Columns),
    maplist(all_distinct, Columns),
    Rows = [A,B,C,D,E,F,G,H,I],
    blocks(A, B, C), blocks(D, E, F), blocks(G, H, I).
```

\% maplist(:Goal, ?List) - true if Goal can succesfully be applied on all elements of List.
\% maplist(:Goal, ?Listı, ?List2) - true if Goal can succesfully be applied to all succesive pairs of elements of Listı and List2.
length_(L, Ls) :length(Ls, L).
blocks([], [], []).
blocks([A,B,C|Bsı], [D,E,F|Bs2], [G,H,I|Bs3]) :all_distinct([A,B,C,D,E,F,G,H,I]), blocks(Bs1, Bs2, Bs3).

problem(1,

[[_,_,_,_,_,_,_,_,_],

[_,_1,_,2,_,_,_],
[,_,_,5,,7,,_,_],
[,_,4,,,,_,1,,_],
[,9,,_,_,_,_,_,],
[5,_,_,_,_, 7,3],
[_,_,2,_,1,_,_,_],
[_,_,_,4,_,_,,9]].

- transpose(+Matrix, ?Transpose).

Transposes a list of lists of the same length.

- Example:
?- transpose ([[1,2,3],[4,5,6],[7,8,9]], Ts).
$\mathrm{Ts}=[[1,4,7],[2,5,8],[3,6,9]]$

Query

?- problem(1, Rows), sudoku(Rows), maplist(writeln, Rows).

$$
\begin{aligned}
& {[9,8,7,6,5,4,3,2,1]} \\
& {[2,4,6,1,7,3,9,8,5]} \\
& {[3,5,1,9,2,8,7,4,6]} \\
& {[1,2,8,5,3,7,6,9,4]} \\
& {[6,3,4,8,9,2,1,5,7]} \\
& {[7,9,5,4,6,1,8,3,2]} \\
& {[5,1,9,2,8,6,4,7,3]} \\
& {[4,7,2,3,1,9,5,6,8]}
\end{aligned}
$$

$[8,6,3,7,4,5,2,1,9]$
Rows $=[[9,8,7,6,5,4,3,2 \mid \ldots], \ldots,[\ldots \mid \ldots]]$.

