Exercise 1. Determine which of the following functions are injective and which are surjective.

- (a) $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = e^x$.
- (b) $f: \mathbb{Z} \to \mathbb{Z}$ defined by $f(n) = n^2 + 3$.
- (c) $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \sin x$.
- (d) $f: \mathbb{Z} \to \mathbb{Z}$ defined by $f(x) = x^2$.
- (e) $f: \mathbb{Z} \to \mathbb{Q}$ defined by f(n) = n/1.
- (f) $f : \mathbb{Q} \to \mathbb{Z}$ defined by f(p/q) = p, where p/q is a rational number expressed in its lowest terms with a positive denominator.
- (g) $f : \mathbb{Z} \to \mathbb{Z}$ defined by f(x) = 2x.

Solution.

- (a) $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = e^x$ is injective, since $\forall a, b \in \mathbb{R} : e^a = e^b \implies a = b$. f is not surjective, since there is no $x \in \mathbb{R}$ such that $f(x) = -1 \in \mathbb{R}$.
- (b) $f : \mathbb{Z} \to \mathbb{Z}$ defined by $f(n) = n^2 + 3$ is not injective, since $f(n) = f(-n) = n^2 + 3$. f is not surjective, since there is no $n \in \mathbb{Z}$ such that $f(n) = 5 \in \mathbb{Z}$.

$$n^2 + 3 = 5 \implies n^2 = 2 \implies n = \pm \sqrt{2} \notin \mathbb{Z}$$
.

- (c) $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \sin x$ is not injective, since $f(\pi) = f(2\pi) = 0$. f is not surjective, since there is no $x \in \mathbb{R}$ such that $f(x) = 2 \in \mathbb{R}$.
- (d) $f : \mathbb{Z} \to \mathbb{Z}$ defined by $f(x) = x^2$ is not injective, since f(1) = f(-1) = 1. f is not surjective, since there is no $x \in \mathbb{Z}$ such that $f(x) = -1 \in \mathbb{Z}$
- (e) $f : \mathbb{Z} \to \mathbb{Q}$ be defined by f(n) = n/1 is injective, since $\forall a, b \in \mathbb{Z} : a/1 = b/1 \implies a = b$. f is not surjective, since there is no $n \in \mathbb{Z}$ such that $f(n) = \frac{1}{2} \in \mathbb{Q}$.
- (f) $f : \mathbb{Q} \to \mathbb{Z}$ be defined by f(p/q) = p where p/q is a rational number expressed in its lowest terms with a positive denominator is not injective, since $f\left(\frac{1}{2}\right) = f\left(\frac{1}{3}\right) = 1$. f is surjective, since

$$\forall y \in \mathbb{Z} : \exists x = \frac{y}{1} \in \mathbb{Q} : f\left(\frac{y}{1}\right) = y$$
.

(g) $f : \mathbb{Z} \to \mathbb{Z}$ defined by f(x) = 2x is injective, since $2x = 2y \implies x = y$. f is not surjective, since there is no $x \in \mathbb{Z}$ such that $f(x) = 3 \in \mathbb{Z}$.

Exercise 2. Is relation $f \subseteq \mathbb{Q} \times \mathbb{Z}$ given by $f\left(\frac{p}{q}\right) = p$ a mapping?

Solution. The relation $f : \mathbb{Q} \times \mathbb{Z}$ given by $f\left(\frac{p}{q}\right) = p$ is not a mapping, since $\frac{1}{2} = \frac{2}{4} \in \mathbb{Q}$, but $1 = f\left(\frac{1}{2}\right) \neq f\left(\frac{2}{4}\right) = 2$, thus making f not functional, and hence violating the definition of a mapping.

Exercise 3. Is the relation $f \subseteq \mathbb{Z} \times \mathbb{Z}$ defined by f(x) = 2x a mapping?

Solution. f is left-total and functional, since $\forall x \in \mathbb{Z} : \exists 2x \in \mathbb{Z}$. Therefore, f is a mapping.

Exercise 4. Is the relation $f \subseteq \mathbb{Z} \times \mathbb{Z}$ defined by $f(x) = \frac{x}{2}$ a mapping?

Solution. f is not left-total, since f does not map $3 \in \mathbb{Z}$, as $f(3) \in \mathbb{Z}$. f is functional, since $a \in \mathbb{Z}$ is uniquely mapped to $\frac{a}{2} \in \mathbb{Z}$. Since f is not left-total (f is defined for even integers only), it is not a mapping.

Exercise 5. Which of the following relations $f \subseteq \mathbb{Q} \times \mathbb{Q}$ define a mapping? If f is not a mapping, supply a reason for it.

(a)
$$f\left(\frac{p}{q}\right) = \frac{p+1}{p-2}$$
 (b) $f\left(\frac{p}{q}\right) = \frac{3p}{2q}$
(c) $f\left(\frac{p}{q}\right) = \frac{p+q}{q^2}$ (d) $f\left(\frac{p}{q}\right) = \frac{3p^2}{7q^2} - \frac{p}{q}$

Solution.

(a) f is not a mapping. f is not left-total, since f(2/3) is undefined. f is not right-unique, since

$$-\frac{2}{3} = f\left(\frac{1}{3}\right) \neq f\left(\frac{3}{9}\right) = 4 \quad .$$

(b) f is a mapping. f is left-total, since

$$\forall \frac{p}{q} \in \mathbb{Q} : \exists \frac{3p}{2q} \in \mathbb{Q} .$$

f is functional since for every $\frac{p}{q} \in \mathbb{Q}$ there exist unique element $\frac{3p}{2q} \in \mathbb{Q}$. Consider an equivalent element $\frac{p'}{q'} \in \mathbb{Q}$ such that p' = kp, q' = kq, and $k \in \mathbb{Z}$. Then

$$f\left(\frac{p'}{q'}\right) = \frac{3 \cdot k \cdot p}{2 \cdot k \cdot q} = \frac{3p}{2q} = f\left(\frac{p}{q}\right)$$

Hence, $f\left(\frac{p}{q}\right)$ as well as $f\left(\frac{p'}{q'}\right)$ correspond to the same element $\frac{3p}{2q}$. Therefore, f is functional. (c) f is not a mapping. f is left-total

$$\forall \frac{p}{q} \in \mathbb{Q} : \exists \frac{p+q}{q^2} \in \mathbb{Q}$$
.

However, f is not functional, since $\frac{1}{2} = \frac{2}{4}$, but

$$\frac{3}{4} = f\left(\frac{1}{2}\right) \neq f\left(\frac{2}{4}\right) = \frac{3}{8}$$

(c) f is a mapping. f is left-total

$$\forall \frac{p}{q} \in \mathbb{Q} : \exists \frac{3p^2}{7q^2} - \frac{p}{q} \in \mathbb{Q}$$
.

f is functional, since for every element $\frac{p}{q} \in \mathbb{Q}$ there exists a unique element $\frac{3p^2}{7q^2} - \frac{p}{q}$. Consider an equivalent element $\frac{p'}{q'}$ such that p' = kp, q' = kq, and $k \in \mathbb{Z}$. Then

$$f\left(\frac{p'}{q'}\right) = \frac{3(kp)^2}{7(kq)^2} - \frac{kp}{kq} = \frac{3k^2p^2 - 7k^2qp}{7k^2q^2} = \frac{3p^2 - 7qp}{7q^2} = \frac{3p^2}{7q^2} - \frac{p}{q} = f\left(\frac{p}{q}\right) \quad .$$

Hence, $f\left(\frac{p}{q}\right)$ as well as $f\left(\frac{p'}{q'}\right)$ correspond do the same element $\frac{3p^2}{7q^2} - \frac{p}{q}$. Therefore, f is functional.