Exercise 1. Determine which of the following functions are injective and which are surjective.
(a) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=e^{x}$.
(b) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(n)=n^{2}+3$.
(c) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\sin x$.
(d) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(x)=x^{2}$.
(e) $f: \mathbb{Z} \rightarrow \mathbb{Q}$ defined by $f(n)=n / 1$.
(f) $f: \mathbb{Q} \rightarrow \mathbb{Z}$ defined by $f(p / q)=p$, where p / q is a rational number expressed in its lowest terms with a positive denominator.
(g) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(x)=2 x$.

Solution.

(a) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=e^{x}$ is injective, since $\forall a, b \in \mathbb{R}: e^{a}=e^{b} \Longrightarrow a=b$. f is not surjective, since there is no $x \in \mathbb{R}$ such that $f(x)=-1 \in \mathbb{R}$.
(b) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(n)=n^{2}+3$ is not injective, since $f(n)=f(-n)=n^{2}+3$. f is not surjective, since there is no $n \in \mathbb{Z}$ such that $f(n)=5 \in \mathbb{Z}$.

$$
n^{2}+3=5 \Longrightarrow n^{2}=2 \Longrightarrow n= \pm \sqrt{2} \notin \mathbb{Z}
$$

(c) $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\sin x$ is not injective, since $f(\pi)=f(2 \pi)=0 . f$ is not surjective, since there is no $x \in \mathbb{R}$ such that $f(x)=2 \in \mathbb{R}$.
(d) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(x)=x^{2}$ is not injective, since $f(1)=f(-1)=1$. f is not surjective, since there is no $x \in \mathbb{Z}$ such that $f(x)=-1 \in \mathbb{Z}$
(e) $f: \mathbb{Z} \rightarrow \mathbb{Q}$ be defined by $f(n)=n / 1$ is injective, since $\forall a, b \in \mathbb{Z}: a / 1=b / 1 \Longrightarrow a=b$. f is not surjective, since there is no $n \in \mathbb{Z}$ such that $f(n)=\frac{1}{2} \in \mathbb{Q}$.
(f) $f: \mathbb{Q} \rightarrow \mathbb{Z}$ be defined by $f(p / q)=p$ where p / q is a rational number expressed in its lowest terms with a positive denominator is not injective, since $f\left(\frac{1}{2}\right)=f\left(\frac{1}{3}\right)=1 . f$ is surjective, since

$$
\forall y \in \mathbb{Z}: \exists x=\frac{y}{1} \in \mathbb{Q}: f\left(\frac{y}{1}\right)=y .
$$

(g) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(x)=2 x$ is injective, since $2 x=2 y \Longrightarrow x=y . f$ is not surjective, since there is no $x \in \mathbb{Z}$ such that $f(x)=3 \in \mathbb{Z}$.
Exercise 2. Is relation $f \subseteq \mathbb{Q} \times \mathbb{Z}$ given by $f\left(\frac{p}{q}\right)=p$ a mapping?
Solution. The relation $f: \mathbb{Q} \times \mathbb{Z}$ given by $f\left(\frac{p}{q}\right)=p$ is not a mapping, since $\frac{1}{2}=\frac{2}{4} \in \mathbb{Q}$, but $1=f\left(\frac{1}{2}\right) \neq f\left(\frac{2}{4}\right)=2$, thus making f not functional, and hence violating the definition of a mapping.

Exercise 3. Is the relation $f \subseteq \mathbb{Z} \times \mathbb{Z}$ defined by $f(x)=2 x$ a mapping?
Solution. f is left-total and functional, since $\forall x \in \mathbb{Z}: \exists 2 x \in \mathbb{Z}$. Therefore, f is a mapping.
Exercise 4. Is the relation $f \subseteq \mathbb{Z} \times \mathbb{Z}$ defined by $f(x)=\frac{x}{2}$ a mapping?
Solution. f is not left-total, since f does not map $3 \in \mathbb{Z}$, as $f(3) \in \mathbb{Z}$. f is functional, since $a \in \mathbb{Z}$ is uniquely mapped to $\frac{a}{2} \in \mathbb{Z}$. Since f is not left-total (f is defined for even integers only), it is not a mapping.

Exercise 5. Which of the following relations $f \subseteq \mathbb{Q} \times \mathbb{Q}$ define a mapping? If f is not a mapping, supply a reason for it.
(a) $\quad f\left(\frac{p}{q}\right)=\frac{p+1}{p-2}$
(b) $f\left(\frac{p}{q}\right)=\frac{3 p}{2 q}$
(c) $f\left(\frac{p}{q}\right)=\frac{p+q}{q^{2}}$
(d) $f\left(\frac{p}{q}\right)=\frac{3 p^{2}}{7 q^{2}}-\frac{p}{q}$

Solution.

(a) f is not a mapping. f is not left-total, since $f(2 / 3)$ is undefined. f is not right-unique, since

$$
-\frac{2}{3}=f\left(\frac{1}{3}\right) \neq f\left(\frac{3}{9}\right)=4 .
$$

(b) f is a mapping. f is left-total, since

$$
\forall \frac{p}{q} \in \mathbb{Q}: \exists \frac{3 p}{2 q} \in \mathbb{Q} .
$$

f is functional since for every $\frac{p}{q} \in \mathbb{Q}$ there exist unique element $\frac{3 p}{2 q} \in \mathbb{Q}$. Consider an equivalent element $\frac{p^{\prime}}{q^{\prime}} \in \mathbb{Q}$ such that $p^{\prime}=k p, q^{\prime}=k q$, and $k \in \mathbb{Z}$. Then

$$
f\left(\frac{p^{\prime}}{q^{\prime}}\right)=\frac{3 \cdot k \cdot p}{2 \cdot k \cdot q}=\frac{3 p}{2 q}=f\left(\frac{p}{q}\right) .
$$

Hence, $f\left(\frac{p}{q}\right)$ as well as $f\left(\frac{p^{\prime}}{q^{\prime}}\right)$ correspond to the same element $\frac{3 p}{2 q}$. Therefore, f is functional.
(c) f is not a mapping. f is left-total

$$
\forall \frac{p}{q} \in \mathbb{Q}: \exists \frac{p+q}{q^{2}} \in \mathbb{Q}
$$

However, f is not functional, since $\frac{1}{2}=\frac{2}{4}$, but

$$
\frac{3}{4}=f\left(\frac{1}{2}\right) \neq f\left(\frac{2}{4}\right)=\frac{3}{8} .
$$

(c) f is a mapping. f is left-total

$$
\forall \frac{p}{q} \in \mathbb{Q}: \exists \frac{3 p^{2}}{7 q^{2}}-\frac{p}{q} \in \mathbb{Q} .
$$

f is functional, since for every element $\frac{p}{q} \in \mathbb{Q}$ there exists a unique element $\frac{3 p^{2}}{7 q^{2}}-\frac{p}{q}$. Consider an equivalent element $\frac{p^{\prime}}{q^{\prime}}$ such that $p^{\prime}=k p, q^{\prime}=k q$, and $k \in \mathbb{Z}$. Then

$$
f\left(\frac{p^{\prime}}{q^{\prime}}\right)=\frac{3(k p)^{2}}{7(k q)^{2}}-\frac{k p}{k q}=\frac{3 k^{2} p^{2}-7 k^{2} q p}{7 k^{2} q^{2}}=\frac{3 p^{2}-7 q p}{7 q^{2}}=\frac{3 p^{2}}{7 q^{2}}-\frac{p}{q}=f\left(\frac{p}{q}\right) .
$$

Hence, $f\left(\frac{p}{q}\right)$ as well as $f\left(\frac{p^{\prime}}{q^{\prime}}\right)$ correspond do the same element $\frac{3 p^{2}}{7 q^{2}}-\frac{p}{q}$. Therefore, f is functional.

