Key Establishment

Ahto Buldas

October 9, 2018

Motives

- Establishing a secret key assumes secure channel and is inconvenient - Can we establish a key via a cryptographic protocol?

Key Establishment Protocol: Formal Definition

Goal: Having a shared key κ, Alice and Bob establish a new shared key K. Key establishment protocol is a quadruple $\left(A, K_{A} ; B, K_{B}\right)$ of functions:

- K_{A} and K_{B} are of type $\Omega \times \Omega \times\{0,1\}^{*} \rightarrow\{0,1\}^{m}$
- A and B are of type $\Omega \times \Omega \times\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ and $\Omega=\{0,1\}^{k}$.

We assume that one bit-string is defined as STOP symbol, that indicates the end of the protocol, in case it is the output of both A and B.

Transcript of a Protocol

Transcript \mathcal{T} of the protocol is computed by the following schema:

$$
\begin{aligned}
& \mathcal{T}_{0}=[] \\
& \mathcal{T}_{n}=\left[\mathcal{T}_{n-1}, A\left(\kappa, \omega_{A}, \mathcal{T}_{n-1}\right), B\left(\kappa, \omega_{B}, \mathcal{T}_{n-1}\right)\right]
\end{aligned}
$$

$\mathcal{T}=\mathcal{T}\left(\kappa, \omega_{A}, \omega_{B}\right):=\mathcal{T}_{n}\left(\kappa, \omega_{A}, \omega_{B}\right)$, where n is the smallest index such that \mathcal{T}_{n} contains the STOP symbol, or if n was the agreed-on maximal number of rounds.

Key Establishment Protocol

Alice: $\quad \kappa, \omega_{\mathrm{A}} \mathcal{T}_{0=[]}$		Bob: $\quad \kappa, \omega_{\mathrm{B}} \mathscr{T}_{0}=[]$
$m^{1}{ }_{\mathrm{A}}=A\left(\kappa, \omega_{\mathrm{A}}, \mathscr{T}_{0}\right)$	$m^{1}{ }_{\text {A }}$	$\begin{gathered} m n_{\mathrm{A}}=B\left(\kappa, \omega_{\mathrm{B}}, \mathscr{T}_{n-1}\right) \\ \mathscr{T}=\left[\mathscr{T}_{n-1} m^{n-1} m^{n-1 \mathcal{B}_{\mathrm{B}}}\right] \\ k_{\mathrm{B}}=K_{\mathrm{B}}\left(\kappa, \omega_{\mathrm{B}} \mathscr{T}^{\prime}\right) \end{gathered}$
$\mathscr{T}_{1}=\left[\begin{array}{lllll} \\ 0 & m^{1}{ }_{\mathrm{A}} m^{1}{ }_{\mathrm{B}}\end{array}\right]$	$m^{1}{ }_{\text {B }}$	
$m^{2}{ }_{\mathrm{A}}=A\left(\kappa, \omega_{\mathrm{A}}, \mathcal{T}_{1}\right)$	$m^{2}{ }_{\text {A }}$	
$\mathscr{T}_{2}=\left[\begin{array}{llll} & m^{2}{ }_{\mathrm{A}} m^{2}{ }_{\mathrm{B}}\end{array}\right]$	$m^{2}{ }_{\text {B }}$	
$m^{3}{ }_{\mathrm{A}}=A\left(\kappa, \omega_{\mathrm{A}}, \mathscr{T}_{2}\right)$	$m^{3}{ }_{\text {A }}$	
	$m^{3}{ }_{\text {B }}$	
	...	
$m n_{\mathrm{A}}=A\left(\kappa, \omega_{\mathrm{A}}, \mathscr{T}_{n-1}\right)$	m^{n} A	
$\mathscr{T}=\left[\begin{array}{llll}\mathscr{T}_{n-1} & m^{n-1} \mathrm{~A} & m^{n-1} \mathrm{~B}\end{array}\right]$	$m^{n_{\mathrm{B}}}$	
	$\mathscr{T}\left(\kappa, \omega_{\mathrm{A}}, \omega_{\mathrm{B}}\right)$	

Problems with Unlimited Adversaries

- No key establishment protocols are secure against unlimited adversaries!

Problems with Unlimited Adversaries

- Carol can find all possible Alice's secret keys that are consistent with the protocol flow
- Carol picks one of such keys randomly and computes her key K^{\prime}
- Carol's output distribution is the same as Alice's output distribution
- Correctness of the protocol implies that with high probability, Alice's key coincides with Bob's key
- But then, with high probability, Carol's key coincides with Bob's key
- Any such a key establishment protocol is vulnerable against unlimited

Carol

Key Establishment Scenario

- The keys $\kappa, \omega_{A}, \omega_{B}$ are chosen uniformly at random
- A and B generate the transcript $\mathcal{T}=\mathcal{T}\left(\kappa, \omega_{A}, \omega_{B}\right)$
$\circ A$ and B compute the keys: $k_{A}=K_{A}\left(\kappa, \omega_{A}, \mathcal{T}\right)$ and $k_{B}=K_{B}\left(\kappa, \omega_{B}, \mathcal{T}\right)$
$\circ C$ is given the old key κ
$\circ C$ chooses $\omega_{A}^{\prime} \leftarrow W_{T, A, \kappa}$ uniformly at random, where

$$
W_{T, A, \kappa}=\left\{\omega_{A}: \exists \omega_{B}^{\prime}: T=\mathcal{T}\left(\kappa, \omega_{A}, \omega_{B}^{\prime}\right)\right\}
$$

- C outputs $k_{C}=K_{A}\left(\kappa, \omega_{A}^{\prime}, \mathcal{T}\right)$

The correctness of the protocol is the probability $\gamma=\mathrm{P}\left[k_{A}=k_{B}\right]$
The success of the adversary C is $\delta=\mathrm{P}\left[k_{C}=k_{B}\right]$

Exchangability of Random Strings

Lemma (Exchangeability)

If $\mathcal{T}\left(\kappa, \omega_{A}, \omega_{B}\right)=T=\mathcal{T}\left(\kappa, \omega_{A}^{\prime}, \omega_{B}^{\prime}\right)$, then $\mathcal{T}\left(\kappa, \omega_{A}^{\prime}, \omega_{B}\right)=T=\mathcal{T}\left(\kappa, \omega_{A}, \omega_{B}^{\prime}\right)$.
Proof: By induction on the number n of rounds.
Basis $(n=1)$: The assumption implies $A\left(\kappa, \omega_{A},\lfloor)=T_{1}=A\left(\kappa, \omega_{A}^{\prime},\lfloor)\right.\right.$ and $B\left(\kappa, \omega_{B}, \downarrow\right)=T_{1}=B\left(\kappa, \omega_{B}^{\prime}, \downarrow\right)$. Therefore:

$$
\begin{aligned}
\mathcal{T}_{1}\left(\kappa, \omega_{A}^{\prime}, \omega_{B}\right) & =\left[A\left(\kappa, \omega_{A}^{\prime}, \sqcup\right) B\left(\kappa, \omega_{B}, \sqcup\right)\right]=\left[A\left(\kappa, \omega_{A}, \sqcup\right) B\left(\kappa, \omega_{B}, \sqcup\right)\right] \\
& =T_{1}=\left[A\left(\kappa, \omega_{A}, \sqcup\right) B\left(\kappa, \omega_{B}^{\prime}, \bigsqcup\right)\right] \\
& =\mathcal{T}_{1}\left(\kappa, \omega_{A}, \omega_{B}^{\prime}\right)
\end{aligned}
$$

Step: Assume that $\mathcal{T}_{n-1}\left(\kappa, \omega_{A}^{\prime}, \omega_{B}\right)=T_{n-1}=\mathcal{T}_{n-1}\left(\kappa, \omega_{A}, \omega_{B}^{\prime}\right)$, where $T_{n-1}=\mathcal{T}_{n-1}\left(\kappa, \omega_{A}, \omega_{B}\right)=\mathcal{T}_{n-1}\left(\kappa, \omega_{A}^{\prime}, \omega_{B}^{\prime}\right)$.

Exchangability of Random Strings

By assumption, $\mathcal{T}_{n}\left(\kappa, \omega_{A}, \omega_{B}\right)=T_{n}=\mathcal{T}_{n}\left(\kappa, \omega_{A}^{\prime}, \omega_{B}^{\prime}\right)$, which implies

$$
A\left(\kappa, \omega_{A}, T_{1}\right)=A\left(\kappa, \omega_{A}^{\prime}, T_{1}\right) \quad \text { and } \quad B\left(\kappa, \omega_{B}, T_{1}\right)=B\left(\kappa, \omega_{B}^{\prime}, T_{1}\right)
$$

Then by induction assumption, $\mathcal{T}_{n-1}\left(\kappa, \omega_{A}^{\prime}, \omega_{B}\right)=T_{n-1}$ and hence:

$$
\begin{aligned}
\mathcal{T}_{n}\left(\kappa, \omega_{A}^{\prime}, \omega_{B}\right) & =\left[T_{n-1} A\left(\kappa, \omega_{A}^{\prime}, T_{n-1}\right) B\left(\kappa, \omega_{B}, T_{n-1}\right)\right] \\
& =\left[T_{n-1} A\left(\kappa, \omega_{A}, T_{n-1}\right) B\left(\kappa, \omega_{B}, T_{n-1}\right)\right] \\
& =\mathcal{T}_{n}\left(\kappa, \omega_{A}, \omega_{B}\right)=T_{n} . \\
\mathcal{T}_{n}\left(\kappa, \omega_{A}, \omega_{B}^{\prime}\right) & =\left[T_{n-1} A\left(\kappa, \omega_{A}, T_{n-1}\right) B\left(\kappa, \omega_{B}^{\prime}, T_{n-1}\right)\right] \\
& =\left[T_{n-1} A\left(\kappa, \omega_{A}, T_{n-1}\right) B\left(\kappa, \omega_{B}, T_{n-1}\right)\right] \\
& =\mathcal{T}_{n}\left(\kappa, \omega_{A}, \omega_{B}\right)=T_{n} .
\end{aligned}
$$

Rectangle Property

Consider the following three sets:

$$
\begin{array}{ll}
W_{T, \kappa}=\left\{\left(\omega_{a}, \omega_{b}\right): \mathcal{T}\left(\kappa, \omega_{a}, \omega_{b}\right)=T\right\} & \text { all pairs }\left(\omega_{a}, \omega_{b}\right) \text { consistent with } T \\
W_{T, A}=\left\{\omega_{a}: \exists \omega_{b}^{\prime} \mathcal{T}\left(\kappa, \omega_{a}, \omega_{b}^{\prime}\right)=T\right\} & \text { all } \omega_{a} \text { consistent with } T \\
W_{T, B}=\left\{\omega_{b}: \exists \omega_{a}^{\prime} \mathcal{T}\left(\kappa, \omega_{a}^{\prime}, \omega_{B}\right)=T\right\} & \text { all } \omega_{b} \text { consistent with } T
\end{array}
$$

Lemma (Rectangle Property)

$$
W_{T, \kappa}=W_{T, A, \kappa} \times W_{T, B, \kappa}
$$

Proof: Inclusion $W_{T, \kappa} \subseteq W_{T, A, \kappa} \times W_{T, B, \kappa}$ is obvious. We prove the dual inclusion. Let $\left(\omega_{A}, \omega_{B}\right) \in W_{T, A, \kappa} \times W_{T, B, \kappa}$. By definition, there exist ω_{A}^{\prime} and ω_{B}^{\prime} such that $\mathcal{T}\left(\kappa, \omega_{A}^{\prime}, \omega_{B}\right)=\mathcal{T}\left(\kappa, \omega_{A}, \omega_{B}^{\prime}\right)=T$. By exchangeability, $\mathcal{T}\left(\kappa, \omega_{A}, \omega_{B}\right)=T$ and hence $\left(\omega_{A}, \omega_{B}\right) \in W_{T, \kappa}$. This implies the statement $W_{T, \kappa}=W_{T, A, \kappa} \times W_{T, B, \kappa}$.

Insecurity against Unlimited Adversaries

Theorem (Success vs Correctness)
$\mathrm{P}\left[k_{C}=k_{B}\right]=\mathrm{P}\left[k_{A}=k_{B}\right]$ in the key establishment scenario.
Proof: It is sufficient to prove that the input distribution $\left\langle\omega_{A}^{\prime}, \mathcal{T}\right\rangle$ of C coincides with A's input distribution $\left\langle\omega_{A}, \mathcal{T}\right\rangle$. Indeed, for every a and T :

$$
\begin{aligned}
\mathrm{P}\left[\omega_{A}^{\prime}=a, \mathcal{T}=T\right] & =\mathrm{P}[\mathcal{T}=T] \cdot \mathrm{P}\left[\omega_{A}^{\prime}=a \mid \mathcal{T}=T\right]=\frac{\left|W_{T, \kappa}\right|}{|\Omega|^{2}} \cdot \frac{1}{\left|W_{T, A, \kappa}\right|} \\
= & \frac{\left|W_{T, A, \kappa} \times W_{T, B, \kappa}\right|}{|\Omega|^{2} \cdot\left|W_{T, A, \kappa}\right|}=\frac{\left|W_{T, A, \kappa}\right| \cdot\left|W_{T, B, \kappa}\right|}{|\Omega|^{2} \cdot\left|W_{T, A, \kappa}\right|}=\frac{\left|W_{T, B, \kappa}\right|}{|\Omega|^{2}} \\
\mathrm{P}\left[\omega_{A}=a, \mathcal{T}=T\right] & =\sum_{b} \mathrm{P}\left[\omega_{A}=a\right] \mathrm{P}\left[\omega_{B}=b\right][T=\mathcal{T}(\kappa, a, b)] \\
& =\frac{1}{|\Omega|^{2}} \sum_{b}[T=\mathcal{T}(\kappa, a, b)]=\frac{\left|W_{T, B, \kappa}\right|}{|\Omega|^{2}} \cdot \square
\end{aligned}
$$

Limits of the Information-Theoretical Security Model

Key Size: The size of the encryption key is close to the size of the encrypted message.

No Key Establishment: Key establishment protocols are insecure against unlimited adversaries.

Computational Security Model

Limited adversaries: Adversary can use limited amount of computational resources:

- Time, i.e. the number of operations
- Memory, i.e. the number of bits stored during computations
- Program Size, i.e. the number of commands in the attacking program If the limits are met, we say that the adversary is efficient

One-Way Functions

A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is one-way if it is:

- Easy to compute: There is a program F that uses reasonable resources and computes $f(x) \leftarrow \mathbf{F}(x)$ for all $x \in\{0,1\}^{*}$.
- Hard to Invert: For every efficient program A the probability

$$
\mathrm{P}\left[x \leftarrow\{0,1\}^{k}, x^{\prime} \leftarrow \mathrm{A}(f(x)): \quad f\left(x^{\prime}\right)=f(x)\right]
$$

is negligibly small.

Modular Exponent Function

Let p be a big prime number $\alpha \in \mathbb{Z}_{p}$ be the so-called primitive element, i.e. all powers $\alpha^{1}, \alpha^{2}, \ldots, \alpha^{p-1}$ are different modulo p.

Then the modular exponent function:

$$
f_{\alpha, p}(x)=\alpha^{x} \bmod p
$$

is believed to be one-way.

Diffie-Hellman Key Establishment

In 1976, Whitfield Diffie and Martin Hellman proposed the following single-round key establishment protocol based on modular exponentiation:

$\circ A$ and B choose $\omega_{A} \leftarrow\{1, \ldots, p-1\}$ and $\omega_{B} \leftarrow\{1, \ldots, p-1\}$

- A computes $y_{A}=\alpha^{\omega_{A}} \bmod p$ and sends $m_{A}^{1}=y_{A}$ to B
$\circ B$ computes $y_{B}=\alpha^{\omega_{B}} \bmod p$ and sends $m_{B}^{1}=y_{B}$ to A
- A computes $k_{A}=y_{B}^{\omega_{A}} \bmod p=\alpha^{\omega_{A} \omega_{B}} \bmod p$
- B computes $k_{B}=y_{A}^{\omega_{B}} \bmod p=\alpha^{\omega_{B} \omega_{A}} \bmod p=k_{A}$

Man in the Middle Attack

Diffie-Hellman key establishment is not secure against active adversaries
Carol can send Bob her own $\alpha^{\omega_{C}}$ instead of Alice's $\alpha^{\omega_{A}}$
Carol can send Alice her own $\alpha^{\omega_{C}}$ instead of Bob's $\alpha^{\omega_{B}}$

