Exercise 1. Given a uniformly distributed random variable X with range $R_X = \{1, 2, 3, 4, 5, 6\}$, what is the probability to get an outcome that is even or greater than 3?

Exercise 2. Consider a uniformly distributed random variables X with range $R_X = \{1, 2, 3, 4, 5, 6\}$ and Y with range $R_Y = \{\text{heads}, \text{tails}\}$. Calculate $\Pr[X = 6, Y = \text{heads}]$.

Exercise 3. Consider a uniformly distributed random variables X with range $R_X = \{1, 2, 3, 4, 5, 6\}$ and Y with range $R_Y = \{\text{heads, tails}\}$. Calculate $\Pr[X = 6 \text{ or } Y = \text{heads}]$.

Exercise 4. Consider a uniformly distributed random variable X with range $R_X = \{1, 2, 3, 4, 5, 6\}$. What is $\Pr[X = 5 \text{ or } X = 6]$?

Exercise 5. Consider a class of 30 students, 17 students are foreigners, and the rest 13 are local students. The test results show that 4 foreigners and 5 local students made an "A". What is the probability that a uniformly selected student will be a local student or one of those who made an "A"?

Exercise 6. Table 1 shows statistical data collected from an employees of an enterprise. Does the salary rate depend on the color of the employee's car?

Table 1. Salary rate vs car color								
	red car	other color						
low salary	28	252						
high salary	7	63						

Table 1	1:	Salary	rate	vs	car	color	
			1		. 1	1	

Exercise 7. Assume you are standing in a line to a football match and see someone with long hair. We have no idea is it a man or a woman, but since this is a line to a football match, we expect to meet men more likely then women. We believe that, on average, out of 100 people, there are 98 men and 2 women. 94 men have short hair, 4 men have long hair. Among women, we believe that the distribution is even, meaning that 1 woman has short hair, and 1 woman has long hair. We observe a long hair in front of us and ask is this person more likely a man or a woman?