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Search strategies
• A search strategy is defined by picking the order of node 

expansion
• Strategies are evaluated along the following dimensions:

– completeness: does it always find a solution if one exists?
– time complexity: number of nodes generated
– space complexity: maximum number of nodes in memory
– optimality: does it always find a least-cost solution?

• Time and space complexity are measured in terms of 
– b: maximum branching factor of the search tree
– d: depth of the least-cost solution
– m: maximum depth of the state space (may be ∞)



Uninformed search strategies

• Uninformed search strategies use only the 
information available in the problem 
definition

• Breadth-first search
• Uniform-cost search
• Depth-first search
• Depth-limited search
• Iterative deepening search



Breadth-first search

• Expand shallowest unexpanded node
• Implementation:

– frontier is a FIFO queue, i.e., new successors go at 
end
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Properties of breadth-first search

• Complete? Yes (if b is finite)
• Time? 1+b+b2+b3+… +bd = O(bd)
• Space? O(bd) (keeps every node in memory)
• Optimal? Yes

• Space is the bigger problem (more than time)



Uniform-cost search
• Expand least-cost unexpanded node
• Implementation:

– frontier = queue ordered by path cost
• Complete? Yes, if step cost ≥ ε
• Time? # of nodes with g ≤ cost of optimal solution, O(bceiling(C*/ 

ε)) where C* is the cost of the optimal solution
• Space? # of nodes with g ≤ cost of optimal solution, 

O(bceiling(C*/ ε))
• Optimal?



Uniform-cost search
• Expand least-cost unexpanded node
• Implementation:

– frontier = queue ordered by path cost
• Complete? Yes, if step cost ≥ ε
• Time? # of nodes with g ≤ cost of optimal solution, O(bceiling(C*/ 

ε)) where C* is the cost of the optimal solution
• Space? # of nodes with g ≤ cost of optimal solution, 

O(bceiling(C*/ ε))
• Optimal? Yes – nodes expanded in increasing order of g(n)
• Equivalent to breadth-first if step costs all equal
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Properties of depth-first search

• Complete? No: fails in infinite-depth spaces, spaces 
with loops
– Modify to avoid repeated states along path

 complete in finite spaces

• Time? O(bm): terrible if m is much larger than d
– but if solutions are dense, may be much faster than 

breadth-first

• Space? O(bm), i.e., linear space!
• Optimal? No
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Depth-limited search

= depth-first search with depth limit l,
i.e., nodes at depth l have no successors

• Recursive implementation:



Depth limited search in Python



Iterative deepening search



Iterative deepening search l =0
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Iterative deepening search l =2



Iterative deepening search l =3



Iterative deepening search
• Number of nodes generated in a depth-limited search to depth d

with branching factor b: 
NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

• Number of nodes generated in an iterative deepening search to 
depth d with branching factor b: 

NIDS = (d+1)b0 + d b1 + (d-1)b2 + … + 3bd-2 +2bd-1 + 1bd

• For b = 10, d = 5,
•

– NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
–
– NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456
–

• Overhead = (123,456 - 111,111)/111,111 = 11%



Properties of iterative deepening 
search

• Complete? Yes
• Time? (d+1)b0 + d b1 + (d-1)b2 + … + bd = O(bd)
• Space? O(bd)
• Optimal? Yes, if step cost = 1



Bidirectional search

• Run two simultaneous searches in parallel
• Ideally bd/2 + bd/2 << bd

– But there has to be an intersection check if the
frontiers intersect.



Summary of algorithms

Criterion Breadth-
first

Uniform-
cost

Depth-first Depth-
limited

Iterative
deepening

Bidirection
al (if
applicable)

Complete? Yes Yes No No Yes Yes

Time O(bd) O(b1+C*/ε) O(bm) O(bl) O(bd) O(bd/2)

Space O(bd) O(b1+C*/ε) O(bm) O(bl) O(bd) O(bd/2)

Optimal? Yes Yes No No No Yes



Repeated states

• Failure to detect repeated states can turn a 
linear problem into an exponential one!

•



Summary

• Problem formulation usually requires abstracting away real-
world details to define a state space that can feasibly be 
explored

• Variety of uninformed search strategies

• Iterative deepening search uses only linear space and not 
much more time than other uninformed algorithms



Acknowledgements

• This set of slides contains several prepared by 
Hwee Tou Ng and Stuart Russell, available 
from the AIMA pages. 

http://aima.cs.berkeley.edu/instructors.html

	Methods of Knowledge Based Software Development�
	Search strategies
	Uninformed search strategies
	Breadth-first search
	Breadth-first search
	Breadth-first search
	Breadth-first search
	Properties of breadth-first search
	Properties of breadth-first search
	Uniform-cost search
	Uniform-cost search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Depth-first search
	Properties of depth-first search
	Properties of depth-first search
	Depth-limited search
	Depth limited search in Python
	Iterative deepening search
	Iterative deepening search l =0
	Iterative deepening search l =1
	Iterative deepening search l =2
	Iterative deepening search l =3
	Iterative deepening search
	Properties of iterative deepening search
	Bidirectional search
	Summary of algorithms
	Repeated states
	Summary
	Acknowledgements

