
Program synthesis

Tallinn University of
Technology

The thesis of Armando Solar Lezama is used -
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-177.html

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-177.html

Program synthesis

Program Synthesis is the task of discovering
an executable program from user intent
expressed in the form of some constraints

Challenge of synthesis

Establishing a proper synergy between the
human and the synthesizer is fundamental
to the success of synthesis

Domain specific synthesis

Domain specific systems take the human
insight and build it directly into the
synthesizer

– AutoBayes - data analysis programs
from statistical models

– FFTW - produces fast Fourier transforms
optimized for specic architectures

Domain specific synthesis

• Generate implementations that often out-
perform hand-written code

• Very specific to a field and rely on domain
specific knowledge

Deductive approach

• Synthesis systems which allow the user to
provide insight directly into the
synthesizer

• Program can be extracted from a
constructive proof of the satisfiability of a
specification

– KIDS, NuPRL

Deductive approach

• In the hands of experts, these systems
are extremely powerful (correct
implementation)

• Demands a high level of expertise.

Sketching

A form of synthesis that uses partial
programs as a communication device
between the programmer and the
synthesizer

– focus the synthesizer on low-level
details, leaving control of the high-level
strategy in the hands of the
programmer

Program synthesis

Find a program P that meets a spec

𝜙(input, output):

∃𝑃∀𝑥.𝜙(𝑥,𝑃(𝑥))

List example

list reverse(list l){

if(isEmpty(l)){

return l;

}else{

node n = popHead(l);

return append(reverse(l) , n);

}

}

List example

list reverseEfficient(list l){

list nl = new list();

while(□) {□}

}

List example

The condition for the loop must be a pointer
comparison involving some of the memory
locations reachable from l and nl

These conditions are stated as expressions
called generators

#define LOC {| (l | nl).(head | tail)(.next)?
| null |}

#define COMP {| LOC (== | !=) LOC |}

List example

list reverseEfficient(list l){

#define LOC {| (l | nl).(head | tail)(.next)? | null |}

#define COMP {| LOC (== | !=) LOC |}

list nl = new list();

while(COMP){□ }

}

List example

• A sequence of assignments to some of the
available pointers

• Guard assignments with some condition

• Temporary variable is required

• Use a different iteration condition for the
first iteration

List example

#define LOC2 {| LOC | tmp |}
#define LHS {| (l | nl).(head)(.next)? | nl.tail | tmp |}

list reverseEfficient(list l){
list nl = new list();
node tmp = null;
bit c = COMP;
while(c){

if(COMP){ LHS = LOC2; }
if(COMP){ LHS = LOC2; }
if(COMP){ LHS = LOC2; }
if(COMP){ LHS = LOC2; }
if(COMP){ LHS = LOC2; }
c = COMP;

}
}

Program synthesis

Find a program P that meets a spec

𝜙(input, output):

∃𝑃∀𝑥.𝜙(𝑥,𝑃(𝑥))

List example

main(bit[N] elems, int n){

if(n < N){

list l1 = populate(elems, n);

list l2 = populate(elems, n);

l1 = reverse(l1);

l2 = reverseEfficient(l2);

assert compare(l1, l2) ;

}

}

Counterexample Guided Inductive
Synthesis (CEGIS)

In sketching, user insight is provided in the
form of a partial program that needs to be
completed

Synthesis problem is reduced to a search for
constant values to assign to each hole in the
sketch

Counterexample Guided Inductive
Synthesis

Counterexample Guided Inductive
Synthesis

The inductive synthesizer uses each new
observation to refine its hypothesis about
what the correct program should be until it
converges to a solution.

Counterexample Guided Inductive
Synthesis

Validation procedure checks the candidate
implementation produced by the inductive
synthesizer

Validation procedure is expected to produce
a concrete input which exhibits the bug in
the candidate program

