Data Mining, Lecture 13
 Mining Graph Data

S. Nõmm
${ }^{1}$ Department of Software Science, Tallinn University of Technology

22.11.2022

Introduction

- The structure may be more important compared to content.
- Applications: physics, biology, social studies.

Non oriented graph representation

Described by the list or by adjacency matrix

	1	2	3	4	5	6
1	0	1	0	0	1	0
2	1	0	1	0	1	0
3	0	1	0	1	0	0
4	0	1	1	0	1	1
5	1	1	0	1	0	0
6	0	0	0	1	0	0

Oriented graph description

Adjacent matrix is non symmetric.

Path \& Walk (chain)

- Walk in the graph G is the sequence $v_{0}, e_{1}, v_{1}, \ldots e_{l}, v_{l}$, where v_{i} are nodes (vertexes) and e_{i} are the ages between the vertexes.
- Vertex v_{0} is referred as initial vertex and v_{l} terminal vertex.
- Path is the walk with no repetitions.
- Vertex v_{i} is reachable from the vertex v_{j} if thehere is a walk from v_{i} to v_{j}.
- The distance between v_{i} and v_{j} is defined as the shortest path between them.

Path \& Walk (chain)

Graph database

Definition

- Graph data base \mathcal{D} is defined as the collection of different undirected graphs $G_{1}=\left(N_{1}, A_{1}\right), \ldots, G_{n}=\left(N_{n}, A_{n}\right)$.
- The set of nodes in i th graph is denoted by N_{i} and the set of edges by A_{i}.
- Each node $p \in N_{i}$ is associated with the label $l(p)$.

Matching and distance computation

- The term matching is used in two distinct contexts for graph mining.
- Pairing up nodes in a single graph with the use of edges is also referred to as matching.
- Within the frameworks of the present lecture the term matching is used with conjunction to graph matching, the problem is also referred as graph isomorphism.

Matching and distance computation

Definition

Two graphs $G_{1}=\left(N_{1}, A_{1}\right)$ and $G_{2}=\left(N_{2}, A_{2}\right)$ are said to be isomorphic if there exists a bijection f between the sets of nodes N_{1} and N_{2}, such that following two conditions are satisfied.
(1) For each pair of corresponding nodes their labels are the same.
(2) The edge between the nodes $p_{i, 1}$ and $p_{j, 1}$ exists in G_{1} if and only if the edge exists between the nodes $f\left(p_{i, 2}\right)$ and $f\left(p_{i, 2}\right)$ in G_{2}.

Definition

A node induced subgraph of graph $G=(N, A)$ is a graph $G_{s}=\left(N_{s}, A_{s}\right)$ satisfying two properties:
(1) $N_{s} \subseteq N$.
(2) $A_{s}=A \cap\left(N_{s} \times N_{s}\right)$.

Matching and distance computation

Definition

A query graph $G_{q}=\left(N_{q}, A_{q}\right)$, is said to be a subgraph isomorphism of the data graph $G=(N, A)$ if two following conditions are satisfied:
(1) For each node $p_{i} \in N_{q}$ there is exist a node $p_{j} \in N$ such that $l\left(p_{i}\right)=l\left(p_{j}\right)$.
(1) The edge $a_{i_{1}, j_{1}}$, between the nodes $p_{i, 1}$ and $p_{j, 1}$, exists in G_{q} if and only if corresponding edge exists in G.

Definition

A Maximal Common Subgraph between a pair of subgraphs $G_{1}=\left(N_{1}, A_{1}\right)$ and $G_{2}=\left(N_{2}, A_{2}\right)$ is a graph $G_{0}=\left(N_{0}, A_{0}\right)$ such that it is a subgraph isomorphism for the both G_{1} and G_{2}, whereas the power of N_{0} is the maximal (of all possible).

Ullmans algorithm may be used to determine all possible subgraph isomorphisms between a query graph and a data graph.

MCG-based distances

NB! Not all of the MCG-based distances satisfy condition to be a metric.

- Unnormalized non-matching measure:

$$
U\left(G_{1}, G_{2}\right)=\left|G_{1}\right|+\left|G_{2}\right|-2 \cdot\left|M C S\left(G_{1}, G_{2}\right)\right|
$$

- Union-normalized distance:

$$
U_{n}=\left(G_{1}, G_{2}\right)=1-\frac{\left|M C S\left(G_{1}, G_{2}\right)\right|}{\left|G_{1}\right|+\left|G_{2}\right|-\operatorname{MCS}\left(G_{1}, G_{2}\right)}
$$

- Max-normalized distance:

$$
U_{n}^{\max }=1-\frac{\left|M C S\left(G_{1}, G_{2}\right)\right|}{\max \left\{\left|G_{1}\right|,\left|G_{2}\right|\right\}}
$$

Edit based distances

Definition

The graph edit distance $E\left(G_{1}, G_{2}\right)$ it the minimum cost of the edit operations to be applied to G_{1} in order to transform it to G_{2}.
item Not necessarily symmetric.

Topological descriptors

Topological descriptors convert structural graphs to multidimensional data by using quantitative measures of important structural characteristics as dimensions.

- Morgan index: equal to the number of nodes reachable from the node within a distance of k.
- Wiener index:equal to the sum of the pairwise shortest path distances between all pairs of nodes.

$$
W(G)=\sum_{i, j \in G} d(i, j)
$$

- Hosoya index: is equal to the number of valid pairwise node-node matchings in the graph.
- Circuit rank: is equal to the minimum number of edges that need to be removed from a graph in order to remove all cycles.

Frequent Substructure Mining in Graphs

The idea of frequent subgraph is identical to the case of association pattern mining, except that a subgraph relationship is used to count the support rather than a subset relationship.

- Let \mathcal{G} - Graph Database, minsup - minimum support.
- begin
- $F_{1}=\{$ All Frequent singleton graphs $\}$;
- $k=1$;
- while F_{k} is not empty do begin
- Generate \mathcal{C}_{k+1} by joining pairs of graphs in F_{k} that share a subgraph of size (k 1) in common;
- Prune subgraphs from \mathcal{C}_{k+1} that violate downward closure;
- Determine F_{k+1} by support counting on $\left(\mathcal{C}_{k+1}, \mathcal{G}\right)$ and retaining subgraphs from \mathcal{C}_{k+1} with support at least minsup;
- $k=k+1$;
- end;
- return $\left(\cup_{i=1}^{k} F_{i}\right)$;
- end

Graph clustering

- The graph clustering problem partitions a database of n graphs into groups.
- Distance-based methods.
- k-medoids
- "community detection" (will be discussed during the next lecture)
- Frequent substructure-based methods.
- Generic Transformational Approach
- XProj: Direct Clustering with Frequent Subgraph Discovery

Graph Classification

- Distance-based methods.
- Frequent substructure-based methods.
- Generic Transformational Approach
- XRules: A Rule-Based Approach

Ullmans algorithm

- Let G_{q} - query graph, G - data graph, \mathcal{M} currently partially matched node pairs.
- begin
- if $|\mathcal{M}|=\left|N_{q}\right|$ then return successful match \mathcal{M}
- else
- $\mathcal{C}=$ Set of all label matching node pairs from $\left(G_{q}, G\right)$ not in \mathcal{M}
- (Optional efficiency optimization)
- for each pair $\left(p_{i_{q}}, p_{i}\right) \in \mathcal{C}$ do
- if $\mathcal{M} \cup\left\{\left(p_{i_{q}}, p_{i}\right)\right\}$ is valid partial matching
- then subgraph match $\left(G_{q}, G, \mathcal{M} \cup\left\{\left(p_{i_{q}}, p_{i}\right)\right\}\right)$;
- end for
- end

Maximum common subgraph algorithm

- Let G_{1} and G_{2} - graphs, \mathcal{M} currently partially matched node pairs, \mathcal{M}_{b} currently best match .
- begin
- $\mathcal{C}=$ Set of all label matching node pairs from $\left(G_{1}, G_{2}\right)$ not in \mathcal{M}
- (Optional efficiency optimization)
- for each pair $\left(p_{i, 1}, p_{j, 2}\right) \in \mathcal{C}$ do
- if $\mathcal{M} \cup\left\{\left(p_{i, 1}, p_{j, 2}\right)\right\}$ is valid matching
- then $\mathcal{M}_{b}=\operatorname{MCG}\left(G_{1}, G_{2}, \mathcal{M} \cup\left\{\left(p_{i, 1}, p_{j, 2}\right)\right\}\right)$;
- end for
- if $\left(|\mathcal{M}|>\left|\mathcal{M}_{b}\right|\right)$ then return \mathcal{M} else return \mathcal{M}_{b}
- end

Graph matching methods and distance computations

- Pairs of graphs that share large subgraphs in common are likely to be more similar.
- Edit distance.
- Transformation based distance computation.

