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Motivation

I linear regression is frequently referred as the ”work horse” of
statistics and machine learning. [Machine Learning, K.P.
Murphy]

I The goal is to predict continuous values.

I Based on the training data set find parameters of the model
(coefficients of the function).

I Use the model (function) to predict (compute) the value of
dependent variable for the given value(s) of independent
variable(s).



Practical Approach (Very simple case)

Let X represent the size of the apartment in square meeters and y
- price of the apartment in thousands of EUR. The goal is to train
a model ŷ = ax+ b able to predict the price of the apartment on
the basis of its size.
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About the model

I The model coefficients were computed on the basis of a
random sample.

I Could it be that for another sample it would be impossible to
identify the parameters? Or another sample would result in
completely different model?

I If my model is trustworthy how good/precise is it?

I Could the model be improved?

I Just a prediction or some other goals?



Goodness of the model

I Determination coefficient.

I Significance of the model.

I Standard error.

I Significance of each variable.

I Normal probability plot

I Residual plots

I . . .



Model building

Let X = {x1, x2, . . . , xn} is the set of independent variables
available for the modelled process. The goal is to select the subset
Xs which is optimal for predicting variable y.

I Using all the available variables may lead:
I Overparametrization
I Unnecessary computational complexity.

I Using too few variables may lead:
I Loss of precision.
I Inadequate behaviour.

One needs to determine if adding/removing variable effected the
model quality.



One more very simple example

Let X be the matrix where the first column contains the
information about distances delivery agent has covered to deliver
all the parcels and the second column contains the information
about the number of parcels. Dependent variable y is the time to
complete the assignment.
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Example

Let us construct the model with just one variable describing
distance:

ŷ = 0.067826087x+ 1.273913043

R2 = 0, 664071312

S = 1, 001791873

F = 15, 81457814

SSR = 8, 028695652

Let us now construct the model with two variables:

ŷ = 0.061134599x1 + 0.923425367x2 − 0.868701467

R2
adj = 0, 876300111

S = 0, 573142152

F = 32, 87836743

SSR = 2, 299443486

Could one conclude that the second model is better?



Example

The null hypothesis is that there is no change in quality and the
alternative hypothesis is the opposite:

H0 : SSR1 − SSR2 = 0

H1 : SSR1 − SSR2 6= 0

For the level of significance α = 0.05 Rejection rule is Reject H0 if
F > 5.5914. For this particular case F = 17, 59536505. This
rejects the hypothesis H0. SSR1 − SSR2 6= 0 which in turn
means that adding variable x2 - parcels number has improved the
model quality.

I More examples of practical implementation will be given
during the practice session.

I What kind of method(s) was/were used to find the
coefficients of the model?



Least squares method

I The goal is to find the values for the coefficients ai and
intercept b that would minimize sum of squared residuals:

SSR =
∑

r2i =
∑

(yi − ŷi)2

I Why does it work? Are there any other methods?

Residuals
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Formal approach

I The goal is to find the parameters of the linear function that
best fits the data

y(x) = wTx+ ε =

D∑
j=1

ωjxj + ε

I It is often assumed that ε has a gaussian distribution

ε ∼ N (µ, σ2).

I One may rewrite the model in the following form

p(y | x,θ) = N +
(
y | µ(x), σ2(x)

)
.

µ = (wTx and σ2(x) = σ2 in this case θ = ((w), σ2)
I Example: the case of one dimensional input is
µ(x) = ω0 + ω1x = wTx.



Maximal likelihood
I Squared cost function leads convex objective function, which

have only one optimum, which is global.
I Compute MLE and find parameters which maximize log

likelihood function or minimize negative log likelihood
function.

`(θ) = log(p | θ) =
N∑
i=1

log p(yi | xi, θ)

I The log likelihood of the defined model is

`(θ) =

N∑
i=1

log

[( 1

2πσ2

) 1
2
exp
(
− 1

2σ2
(
yi − θTxi

)2)]

=
−1
2σ2

SSR(θ)− N

2
log(2πσ2)

where SSR =
N∑
i=1

(yiθ
Txi)

2



Gradient descend

I Iterative technique, parameters are updated on each iteration.

I Initialize parameters randomly.

I Each parameter is updated in the direction of its negative
gradient.

I For each θi repeat in parallel until converge

θ
(k+1)
j = θ

(k)
j − α

∂J(θ)

∂θj

I α is a learning rate.
I this is first order algorithm.



Gradient descent for the least squares

I Find the derivative of the objective function

∂J(θ)

∂θj
=

∂

∂θj

1

2

(
ŷ − y

)2
=
(
ŷ − y

) ∂
∂θj

ŷ =
(
ŷ − y

)
xj

I For the entire data set

∂J(θ)

∂θj
=

m∑
i=1

(
ŷi − yi

)
xi,j

I Update rule:

θk+1
j = θkj − α

m∑
i=1

(
ŷi − yi

)
xi,j .



Non-linear functions and linear regression

I Replace x with some nonlinear functions φ(x)

ŷ = θTφ(x)

I This operation is called basis function expansion.

I Example: polynomial regression

φ(x) = [1, x, x2, . . . , xd]

I While the function is non-linear, it is still linear in its
parameters.



Polynomial regression

I On the one hand polynomial function allows to fit the data
with a very high precision, which is achieved by large positive
and negative values of the coefficients.

I On the other hand small changes in the data will lead greater
changes in the coefficients.

I Makes it problematic to model noisy data.



Encouraging smaller values of the parameters

I Use a zero-mean Gaussian prior:

P (θ) =
∏
j

N (θj | 0, τ2)

I Corresponding log likelihood function:

`(θ) =

m∑
i=1

logN (yi | θTxi, σ
2)

n∑
j=1

logN (θj | 0, τ2)



Ridge regression

I Regularized objective function:

J(θ) =
1

2

m∑
i=1

(yi − θTxi)
2λ

2
|| θ ||22

where λ = σ2/τ2

I The regularized linear regression is called ridge regression

I Ridge regression normal equation normal equation is given by

θridge = (λI −XTX)−1XTY

I Adding Gaussian prior to parameters is called `2
regulaarization


