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Linear regression: probably the oldest machine learning
technique
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Compute coefficients of
the linear equation

ŷ = ax+ b

Evaluate the model

In multivariate case it is required to identify coefficients of the model

ŷ = a1x1 + a2x2 + . . .+ anxn + b.

This leads the necessity to choose variables (perform model building).
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Linear regression

Correlation coefficient.

ρ =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2

where, n - is the sample size, x and y are the variable of interest.

−1 ≤ ρ ≤ 1

Assumption there are exist α and β such that for any i = 1, . . . , n
yi = αxi + β + εi holds. Assumption: ε is sufficiently small normally
distributed.

The goal of regression is to find estimates of the coefficients α and β,
such that for a and b

yi = axi + b+ ε̂i

sum of squares of ε̂i would be minimal. NB! notation α̂ and β̂ is also
widely use.
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Least squares method
Least squares method:

a =

∑n
i=1 xiyi∑n
i=1 x

2
i

; b = ȳ − ax̄
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For an arbitrary number of variables:

y = b1x1 + . . .+ bnxn + b0

then
b̂ = (XTX)−1XT y.

where each row of matrix X is input vector with 1 in the first position.
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Model validation

Coefficient of determination R2 and adjusted R2.

Significance of the model and model coefficients.

Verify assumption that residuals are normally distributed.

Residual sum squares. RSS =
∑N

i=1(yi − xTi β)
2.

Sum squares of the regression SSR =
∑N

i=1(ŷi − ȳ)2.

Total sum squares or sum of squares about the mean
SST =

∑N
i=1(yi − ȳ)2.

R2 computed as the ratio of Sum squares of the regression to total
sum squares or one minus ratio of Residual sum squares to total sum
squares whereas adjusted R2 is one minus ratio of residual sum
squares computed for n− 1 to Total sum squares for n− p
observation points.
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MLE for regression least squares I

Linear regression is the model of the form

p(y|x, θ) = N (y|βTx, σ2)

where β are the coefficients of the linear model, σ is the standard
deviation of x and θ = (β, σ2)

Parameter estimation of a statistical model is usually performed by
computing MLE θ̂ = argmaxθ log p(D|θ). remind that D denotes the
data set
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MLE for regression least squares II

Assumption: elements of the training set are independent and
identically distributed.

Then log likelihood is given by
ℓ(θ) = log p(D|θ) =

∑N
i=1 log p(yi|xi, θ).

As usually instead of maximizing the log- likelihood one may minimize
negative log likelihood.

ℓ(θ) =

N∑
i=1

log

[( 1

2πσ2

)
exp
(
− 1

2σ2
(yi − βTxi)

2
)]

=
−1

2σ2
RSS(β)− N

2
log(2πσ2).
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MLE for regression least squares II

In order to minimize RSS differentiate its equation which lead

∇θ = XTXβ −XT y.

Equate it to zero and solve for β

β = (XTX)−1XTY

last equation is referred as normal equation.
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Regularization

Overfitting may be caused by the fact that chosen model structure
and data are not conform on another.

Regularization is the technique used to overcome overfitting.

Regularization imposes cost or penalty on the cost function and
prevent larger values of the coefficients.

Loosely speaking, regularization shrinks the coefficients towards zero
and towards one another.
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Ridge regression

Ridge regression shrinks the coefficients by penalizing their size.

β̂ridge = argminβ

{ N∑
i=1

(
yi − β0 −

p∑
j=1

xijβj
)2

+ λ

p∑
j=1

β2
j

}
λ is the nonnegative shrinkage parameter, its large values correspond
to the greater amount of shrinkage applied.

Alternatively the following notation is widely used:

β̂ridge = argminβ

N∑
i=1

(
yi − β0 −

p∑
j=1

xijβj
)2

subject to

N∑
j=1

β2
j ≤ t
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The Lasso

Ridge regression shrinks the coefficients by penalizing their size.

β̂lasso = argminβ
1

2

{ N∑
i=1

(
yi − β0 −

p∑
j=1

xijβj
)2

+ λ

p∑
j=1

|βj |
}

λ is the nonnegative shrinkage parameter, its large values correspond
to the greater amount of shrinkage applied.

Alternatively the following notation is widely used:

β̂ridge = argminβ

N∑
i=1

(
yi − β0 −

p∑
j=1

xijβj
)2

subject to

N∑
j=1

|βj | ≤ t

Computing the lasso solution is a quadratic programming problem.
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Statistical hypothesis testing (brief reminder I)

Assumption about a parameter of population is a statistical
hypothesis.

Usually a pair of hypothesis is stated (H0, H1), notation (H0, Ha).
▶ H0 the null hypothesis usually states that there is no statistically

significant relationship between two phenomena.
▶ H1 the alternative hypothesis usually states the opposite to the H0.

Choose and compute test statistic and rejection rule.

Interpret the results.

What can possibly go wrong?
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Statistical hypothesis testing (brief reminder II)

Accept H0 Reject H0

H0 is true Correct Type 1 Error

H0 is false Type II Error Correct
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Model building (feature selection)

Let us suppose that observed process has p independent variables
x1, . . . , xp and one dependent variable y. Should one build the regression
equation using all p variables or not?

Are all the variables x1, . . . , xp uncorrelated?

Which subset of variables result in a ”better” model?

How to prove that as a result of adding or deleting a variable model
quality has improved?
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”Butler tracking company” example

Independent variables: Distance to drive and number of parcels to
deliver. Dependent variable: time.

Distances to drive for each assignment: 100, 50, 100, 100, 50, 80, 75,
65, 90, 90.

Number of parcels to deliver: 4, 3, 4, 2, 2, 2, 3, 4, 3, 2

Time in hours: 9.3, 4.8, 8.9, 6.5, 4.2, 6.2, 7.4, 6, 7.6, 6.1.

Pearson correlation coefficient between distance and time is 0.81.
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”Butler tracking company” example continued
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Model 1

Is significant p = 0.004,
F = 15.1846 whereas
R2 = 0.6641.

Model 2

Is significant p = 0.000276,
F = 32.9 whereas adjusted
R2 = 0.87.

Is it enough to say that model
2 is more precise?
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Quality comparison
To compare different models residual sum of squares (RSS) is used.

Hypothesis statements: H0 : RSSs ≤ RSSc H1 : RSSs > RSSc.

Test statistic (empirical parameter) for ANOVA:

Fstat =

(
RSSs − RSSc

m

)(
RSSc

n− p− 1

)−1

where RSSc is the residuals sum squares of model with more variables,
RSSs - is the residuals sum squares of model with less variables, m
number of variables added or removed, n is the number of observation
points, p - is the number of variables in more complicated model.

Rejection rule for α (significance level), degrees of freedom: first is
the number of variables added or removed, second is n− p− 1.
Decision:

▶ (if adding variables) rejected null hypothesis proves that adding
variables caused model quality to increase significantly.

▶ (if deleting variables) rejected alternative hypothesis proves that
deleting variables did not cause model quality to significant decrease.
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”Butler tracking company” example continued

RSS1 = 15.8713, RSS2 = 2.2994 NB! Observe that corresponding
MATLAB notation is SSE!!!

choose α = 0.05 degrees of freedom: first will be 1 (one variable
(number of parcels)) were added, second 7 (n = 10, p = 2).

Rejection rule: reject H0 if Fstat > 5.5914

Compute Fstat = 17.4411. (use table, or MATLAB or EXCEL)

Reject H0. Adding the variable has increased the model quality.
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Linear model building 1

Choose or determine all the hyperparameters. Possible order
limitations, backward elimination / forward selection/ batch
processing, set the level of significance and threshold for correlation.
These parameters also define stopping criteria.

Stop when: model is significant, and goodness parameters as
expected OR no more variables to add or delete OR maximal or
minimal order is reached etc.

Investigate if available explanatory variables (predictors) are linearly
independent. Strong dependencies between variables chosen as
”independent” lead problems with inverting matrix X. Compute
multicollinearity matrix where element in ith row and jth column is
Pearson correlation coefficients computed for variables i and j. Based
on this table determine subset(s) of variables which are linearly
independent.
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Linear model building 2
Repeat

Apply mean squares (or other technique) to build the model from selected
variables.

Evaluate significance- and quality- of the model. For quality observe determination
coefficient and error. For significance use F - test and t-test variable wise.

If model fail goodness or significance check then return to the previous model and
choose another set of variables to add/delete.

Starting from second iteration prove, using F - test, that as a result of
adding/deliting variables model quality has improved/did not decreased
significantly.

If adding/deliting variables was not successful return to the previous model and if
possible chose another variable(s) to add /delete or report the model from previous
step.

If goodness criteria (quality and significance) is met stop and return the model.

If goodness criteria was not met but adding deleting variables proved to be
successful chose the set of variables to be added or deleted (t-test) on the next
step.

Until stopping criteria is reached.

Report the results.
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Linear model building 3

Reminder p - is the number of variables n is the sample size.

F -test of overall significance in regression analysis.

Test for model significance. H0 : b1 = . . . = bp = 0, H1 :
∃i : 1 ≤ i ≤ p&bi ̸= 0.

Test statistic:

F =

n∑
i=1

(ŷi − ȳ)2

p− 1
n∑

i=1

(yi − ŷi)
2

n− p

Rejection rule: Determine using F-table or corresponding software
function with chosen significance level, n degrees of freedom in
denominator and p degrees of freedom in nominator.
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Linear model building 4

F -test to determine significance of change in model quality caused
by adding variables

▶ H0 : RSSS ≤ RSSC , H1 : RSSS > RSSC .
▶ Test statistic:

F =

RSSS −RSSC

m
RSSC

n− p− 1

▶ Rejection rule: Determine using F-table or corresponding software
function with chosen significance level, n− p− 1 degrees of freedom in
denominator and m degrees of freedom in nominator.

t - test on individual regression coefficients
▶ H0 : bi = 0, H1 : bi ̸= 0.
▶ Test statistic: t = b̂i/se(b̂i)
▶ Use t - table or corresponding function to find rejection rule for chosen

significance and n− 2 degrees of freedom.
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Linear model building 5

Begin

Initialize hyperparameters
Investigate multicollinearity

Apply chosen technique to 
find model coefficients

Model is 
significant?

Model quality 
above threshold?

Return to the previous 
model and add/remove 
another set of variables

Adding / deleting 
variables justified?

End

Choose variables to be 
added / removed 

No Different 
variable set?

Return model or 
report.

No

No

No

Different 
variable set?

Yes

Yes

Yes

Yes

Yes No
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Nonlinear regression

By replacing independent variables X with a nonlinear mapping ϕ(X).

This will lead
fθ(X) = θTϕ(X)

This process is referred as basis function expansion.

Example: Polynomial regression has basis function
ϕ(X) = [1, x, x2, . . . , xd]. The model remains linear in the
parameters.
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Polynomial regression 1
Higher degree polynomial models tend to over fit. The coefficients
become relatively large, which causes the regression curve to ”wiggle”.

In order to achieve ”encourage” smaller weight values introduce
zero-mean Gaussian prior:

p(θ) =
∏
j

N (θj |0, τ2)

where 1/τ2 controls the strength of prior.

This lead following log-likelihood estimate

ℓ =

N∑
i=1

logN (yi|θTxi, σ2) +

p∑
j=1

logN (θj |0, τ2)

The solution is given by:

θ̂r = (λI +XTX)−1XT y
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Logistic regression
Remind that linear regression may be written in the following form:

p(y|x, θ) = N (y|µ(x), σ2(x))

This may be generalized to the binary setting as follows:

p(y|x, θ) = Ber(y|sigm(θTx))

where sigm(η) = (1 + e−η)−1. Will be referred as logistic regression.
Fitting is usually done by maximum likelihood

ℓ(θ) =

N∑
i=1

log p(gi)(xi|θ) =
N∑
i=1

{
yiβ

Txi − log(1 + eβ
T xi)

}
Solving the last one is done by means of iterative algorithm.

bnew = argmin
b
(z −Xb)TW (z −Xb)

z = Xb+W−1(y − p)

where W is a N ×N diagonal matrix with ith element
p(xi, |b)(1− p(xi|b))
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k-nn regression

The value of the response (dependent variable) defined as the average of
its k nearest neighbours from the training set.

2

2.5

parcels

34

5

100 95 3.5

6

90

distance

85 80

7

tim
e

75 70

8

65 60 4

9

55 50

10
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Regression trees

Partition the feature space into the set of rectangles.

Fit a simple model (for example constant) in each rectangle.

Fitting the model is similar to the case of classification trees.
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