Machine Learning

Supervised learning 2

S. Nõmm
${ }^{1}$ Department of Software Science, Tallinn University of Technology

27.02.2024

Linear regression: probably the oldest machine learning technique

- Find linear correlation coefficient.
- Compute coefficients of the linear equation

$$
\hat{y}=a x+b
$$

- Evaluate the model
- In multivariate case it is required to identify coefficients of the model

$$
\hat{y}=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}+b
$$

This leads the necessity to choose variables (perform model building).

Linear regression

- Correlation coefficient.

$$
\rho=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}}
$$

where, n - is the sample size, x and y are the variable of interest.

- $-1 \leq \rho \leq 1$
- Assumption there are exist α and β such that for any $i=1, \ldots, n$ $y_{i}=\alpha x_{i}+\beta+\varepsilon_{i}$ holds. Assumption: ε is sufficiently small normally distributed.
- The goal of regression is to find estimates of the coefficients α and β, such that for a and b

$$
y_{i}=a x_{i}+b+\hat{\varepsilon_{i}}
$$

sum of squares of $\hat{\varepsilon_{i}}$ would be minimal. NB! notation $\hat{\alpha}$ and $\hat{\beta}$ is also widely use.

Least squares method

Least squares method:

$$
a=\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2}} ; \quad b=\bar{y}-a \bar{x}
$$

For an arbitrary number of variables:

$$
y=b_{1} x_{1}+\ldots+b_{n} x_{n}+b_{0}
$$

then

$$
\hat{b}=\left(X^{T} X\right)^{-1} X^{T} y
$$

where each row of matrix X is input vector with 1 in the first position.

Model validation

- Coefficient of determination R^{2} and adjusted R^{2}.
- Significance of the model and model coefficients.
- Verify assumption that residuals are normally distributed.
- Residual sum squares. $\mathrm{RSS}=\sum_{i=1}^{N}\left(y_{i}-x_{i}^{T} \beta\right)^{2}$.
- Sum squares of the regression $\mathrm{SSR}=\sum_{i=1}^{N}\left(\hat{y}_{i}-\bar{y}\right)^{2}$.
- Total sum squares or sum of squares about the mean $\mathrm{SST}=\sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}$.
- R^{2} computed as the ratio of Sum squares of the regression to total sum squares or one minus ratio of Residual sum squares to total sum squares whereas adjusted R^{2} is one minus ratio of residual sum squares computed for $n-1$ to Total sum squares for $n-p$ observation points.

MLE for regression least squares I

- Linear regression is the model of the form

$$
p(y \mid x, \theta)=\mathcal{N}\left(y \mid \beta^{T} x, \sigma^{2}\right)
$$

where β are the coefficients of the linear model, σ is the standard deviation of x and $\theta=\left(\beta, \sigma^{2}\right)$

- Parameter estimation of a statistical model is usually performed by computing MLE $\hat{\theta}=\arg \max _{\theta} \log p(\mathcal{D} \mid \theta)$. remind that \mathcal{D} denotes the data set

MLE for regression least squares II

- Assumption: elements of the training set are independent and identically distributed.
- Then \log likelihood is given by
$\ell(\theta)=\log p(\mathcal{D} \mid \theta)=\sum_{i=1}^{N} \log p\left(y_{i} \mid x_{i}, \theta\right)$.
- As usually instead of maximizing the log- likelihood one may minimize negative log likelihood.

$$
\begin{array}{r}
\ell(\theta)=\sum_{i=1}^{N} \log \left[\left(\frac{1}{2 \pi \sigma^{2}}\right) \exp \left(-\frac{1}{2 \sigma^{2}}\left(y_{i}-\beta^{T} x_{i}\right)^{2}\right)\right] \\
=\frac{-1}{2 \sigma^{2}} \operatorname{RSS}(\beta)-\frac{N}{2} \log \left(2 \pi \sigma^{2}\right)
\end{array}
$$

MLE for regression least squares II

- In order to minimize RSS differentiate its equation which lead

$$
\nabla \theta=X^{T} X \beta-X^{T} y
$$

- Equate it to zero and solve for β

$$
\beta=\left(X^{T} X\right)^{-1} X^{T} Y
$$

last equation is referred as normal equation.

Regularization

- Overfitting may be caused by the fact that chosen model structure and data are not conform on another.
- Regularization is the technique used to overcome overfitting.
- Regularization imposes cost or penalty on the cost function and prevent larger values of the coefficients.
- Loosely speaking, regularization shrinks the coefficients towards zero and towards one another.

Ridge regression

- Ridge regression shrinks the coefficients by penalizing their size.

$$
\hat{\beta}^{\text {ridge }}=\operatorname{argmin}_{\beta}\left\{\sum_{i=1}^{N}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} x_{i j} \beta_{j}\right)^{2}+\lambda \sum_{j=1}^{p} \beta_{j}^{2}\right\}
$$

λ is the nonnegative shrinkage parameter, its large values correspond to the greater amount of shrinkage applied.

- Alternatively the following notation is widely used:

$$
\begin{aligned}
\hat{\beta}^{\text {ridge }}= & \operatorname{argmin}_{\beta} \sum_{i=1}^{N}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} x_{i j} \beta_{j}\right)^{2} \\
& \text { subject to } \sum_{j=1}^{N} \beta_{j}^{2} \leq t
\end{aligned}
$$

The Lasso

- Ridge regression shrinks the coefficients by penalizing their size.

$$
\hat{\beta}^{\text {lasso }}=\operatorname{argmin}_{\beta} \frac{1}{2}\left\{\sum_{i=1}^{N}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} x_{i j} \beta_{j}\right)^{2}+\lambda \sum_{j=1}^{p}\left|\beta_{j}\right|\right\}
$$

λ is the nonnegative shrinkage parameter, its large values correspond to the greater amount of shrinkage applied.

- Alternatively the following notation is widely used:

$$
\begin{aligned}
\hat{\beta}^{\text {ridge }}= & \operatorname{argmin}_{\beta} \sum_{i=1}^{N}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} x_{i j} \beta_{j}\right)^{2} \\
& \text { subject to } \sum_{j=1}^{N}\left|\beta_{j}\right| \leq t
\end{aligned}
$$

- Computing the lasso solution is a quadratic programming problem.

Statistical hypothesis testing (brief reminder I)

- Assumption about a parameter of population is a statistical hypothesis.
- Usually a pair of hypothesis is stated $\left(H_{0}, H_{1}\right)$, notation $\left(H_{0}, H_{a}\right)$.
- H_{0} the null hypothesis usually states that there is no statistically significant relationship between two phenomena.
- H_{1} the alternative hypothesis usually states the opposite to the H_{0}.
- Choose and compute test statistic and rejection rule.
- Interpret the results.
- What can possibly go wrong?

Statistical hypothesis testing (brief reminder II)

	Accept H_{0}	Reject H_{0}
H_{0} is true	Correct	Type 1 Error
H_{0} is false	Type II Error	Correct

Model building (feature selection)

Let us suppose that observed process has p independent variables x_{1}, \ldots, x_{p} and one dependent variable y. Should one build the regression equation using all p variables or not?

- Are all the variables x_{1}, \ldots, x_{p} uncorrelated?
- Which subset of variables result in a "better" model?
- How to prove that as a result of adding or deleting a variable model quality has improved?

"Butler tracking company" example

- Independent variables: Distance to drive and number of parcels to deliver. Dependent variable: time.
- Distances to drive for each assignment: $100,50,100,100,50,80,75$, 65, 90, 90.
- Number of parcels to deliver: $4,3,4,2,2,2,3,4,3,2$
- Time in hours: $9.3,4.8,8.9,6.5,4.2,6.2,7.4,6,7.6,6.1$.
- Pearson correlation coefficient between distance and time is 0.81 .

"Butler tracking company" example continued

Model 1
Is significant $p=0.004$, $F=15.1846$ whereas $R^{2}=0.6641$.

Model 2

Is significant $p=0.000276$,
$F=32.9$ whereas adjusted $R^{2}=0.87$.

Is it enough to say that model 2 is more precise?

Quality comparison

- To compare different models residual sum of squares (RSS) is used.
- Hypothesis statements: $H_{0}: \mathrm{RSS}_{s} \leq \mathrm{RSS}_{c} H_{1}: \mathrm{RSS}_{s}>\mathrm{RSS}_{c}$.
- Test statistic (empirical parameter) for ANOVA:

$$
F_{\text {stat }}=\left(\frac{\mathrm{RSS}_{s}-\mathrm{RSS}_{c}}{m}\right)\left(\frac{\mathrm{RSS}_{c}}{n-p-1}\right)^{-1}
$$

where RSS_{c} is the residuals sum squares of model with more variables, RSS_{s} - is the residuals sum squares of model with less variables, m number of variables added or removed, n is the number of observation points, p - is the number of variables in more complicated model.

- Rejection rule for α (significance level), degrees of freedom: first is the number of variables added or removed, second is $n-p-1$.
- Decision:
- (if adding variables) rejected null hypothesis proves that adding variables caused model quality to increase significantly.
- (if deleting variables) rejected alternative hypothesis proves that deleting variables did not cause model quality to significant decrease.

"Butler tracking company" example continued

- $\mathrm{RSS}_{1}=15.8713, \mathrm{RSS}_{2}=2.2994 \mathrm{NB}$! Observe that corresponding MATLAB notation is SSE!!!
- choose $\alpha=0.05$ degrees of freedom: first will be 1 (one variable (number of parcels)) were added, second $7(n=10, p=2)$.
- Rejection rule: reject H_{0} if $F_{\text {stat }}>5.5914$
- Compute $F_{\text {stat }}=17.4411$. (use table, or MATLAB or EXCEL)
- Reject H_{0}. Adding the variable has increased the model quality.

Linear model building 1

- Choose or determine all the hyperparameters. Possible order limitations, backward elimination / forward selection/ batch processing, set the level of significance and threshold for correlation. These parameters also define stopping criteria.
- Stop when: model is significant, and goodness parameters as expected OR no more variables to add or delete OR maximal or minimal order is reached etc.
- Investigate if available explanatory variables (predictors) are linearly independent. Strong dependencies between variables chosen as "independent" lead problems with inverting matrix X. Compute multicollinearity matrix where element in i th row and j th column is Pearson correlation coefficients computed for variables i and j. Based on this table determine subset(s) of variables which are linearly independent.

Linear model building 2

- Repeat
- Apply mean squares (or other technique) to build the model from selected variables.
- Evaluate significance- and quality- of the model. For quality observe determination coefficient and error. For significance use F - test and t-test variable wise.
- If model fail goodness or significance check then return to the previous model and choose another set of variables to add/delete.
- Starting from second iteration prove, using F - test, that as a result of adding/deliting variables model quality has improved/did not decreased significantly.
- If adding/deliting variables was not successful return to the previous model and if possible chose another variable(s) to add / delete or report the model from previous step.
- If goodness criteria (quality and significance) is met stop and return the model.
- If goodness criteria was not met but adding deleting variables proved to be successful chose the set of variables to be added or deleted (t-test) on the next step.
- Until stopping criteria is reached.
- Report the results.

Linear model building 3

Reminder p - is the number of variables n is the sample size.

- F-test of overall significance in regression analysis.
- Test for model significance. $H_{0}: b_{1}=\ldots=b_{p}=0, H_{1}$: $\exists i: 1 \leq i \leq p \& b_{i} \neq 0$.
- Test statistic:

$$
F=\frac{\frac{\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}}{p-1}}{\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-p}}
$$

- Rejection rule: Determine using F-table or corresponding software function with chosen significance level, n degrees of freedom in denominator and p degrees of freedom in nominator.

Linear model building 4

- F-test to determine significance of change in model quality caused by adding variables
- $H_{0}: R S S_{S} \leq R S S_{C}, H_{1}: R S S_{S}>R S S_{C}$.
- Test statistic:

$$
F=\frac{\frac{R S S_{S}-R S S_{C}}{m}}{\frac{R S S_{C}}{n-p-1}}
$$

- Rejection rule: Determine using F-table or corresponding software function with chosen significance level, $n-p-1$ degrees of freedom in denominator and m degrees of freedom in nominator.
- t - test on individual regression coefficients
- $H_{0}: b_{i}=0, H_{1}: b_{i} \neq 0$.
- Test statistic: $t=\hat{b_{i}} / \operatorname{se}\left(\hat{b}_{i}\right)$
- Use t - table or corresponding function to find rejection rule for chosen significance and $n-2$ degrees of freedom.

Linear model building 5

Nonlinear regression

- By replacing independent variables X with a nonlinear mapping $\phi(X)$.
- This will lead

$$
f_{\theta}(X)=\theta^{T} \phi(X)
$$

- This process is referred as basis function expansion.
- Example: Polynomial regression has basis function $\phi(X)=\left[1, x, x^{2}, \ldots, x^{d}\right]$. The model remains linear in the parameters.

Polynomial regression 1

- Higher degree polynomial models tend to over fit. The coefficients become relatively large, which causes the regression curve to " wiggle".
- In order to achieve "encourage" smaller weight values introduce zero-mean Gaussian prior:

$$
p(\theta)=\prod_{j} \mathcal{N}\left(\theta_{j} \mid 0, \tau^{2}\right)
$$

where $1 / \tau^{2}$ controls the strength of prior.

- This lead following log-likelihood estimate

$$
\ell=\sum_{i=1}^{N} \log \mathcal{N}\left(y_{i} \mid \theta^{T} x_{i}, \sigma^{2}\right)+\sum_{j=1}^{p} \log \mathcal{N}\left(\theta_{j} \mid 0, \tau^{2}\right)
$$

- The solution is given by:

$$
\hat{\theta_{r}}=\left(\lambda I+X^{T} X\right)^{-1} X^{T} y
$$

Logistic regression

- Remind that linear regression may be written in the following form:

$$
p(y \mid x, \theta)=\mathcal{N}\left(y \mid \mu(x), \sigma^{2}(x)\right)
$$

- This may be generalized to the binary setting as follows:

$$
p(y \mid x, \theta)=\operatorname{Ber}\left(y \mid \operatorname{sigm}\left(\theta^{T} x\right)\right)
$$

where $\operatorname{sigm}(\eta)=\left(1+e^{-\eta}\right)^{-1}$. Will be referred as logistic regression.

- Fitting is usually done by maximum likelihood

$$
\left.\ell(\theta)=\sum_{i=1}^{N} \log p_{(} g_{i}\right)\left(x_{i} \mid \theta\right)=\sum_{i=1}^{N}\left\{y_{i} \beta^{T} x_{i}-\log \left(1+e^{\beta^{T} x_{i}}\right)\right\}
$$

- Solving the last one is done by means of iterative algorithm.

$$
\begin{aligned}
b^{\text {new }} & =\arg \min _{b}(z-X b)^{T} W(z-X b) \\
z & =X b+W^{-1}(y-p)
\end{aligned}
$$

where W is a $N \times N$ diagonal matrix with i th element $p\left(x_{i}, \mid b\right)\left(1-p\left(x_{i} \mid b\right)\right)$

k-nn regression

The value of the response (dependent variable) defined as the average of its k nearest neighbours from the training set.

Regression trees

- Partition the feature space into the set of rectangles.
- Fit a simple model (for example constant) in each rectangle.
- Fitting the model is similar to the case of classification trees.

