Hybrid Systems Lecture 1

Sven Nõmm

TTÜ 2016

Course organization

- Contact: E-mail for Questions and Home assignments sven.nomm@gmail.com Please avoid contacting me by phone!
- You may download the slides: TBA
- References:
- Handbook of Hybrid Systems Control, Cambridge University Press, 2009, Editors: JAN LUNZE \& FRANÇOISE LAMNABHI-LAGARRIGUE
- Additionally some materials will be cited during the course and made available via webpage if necessary
- The course consists of a) Theoretical lectures, Student presentations, Practical exercises in MATLAB environment. The class is reserved on Tuesdays 16:00-17:30. Some times we will explore some examples together, sometimes I just be around to help you with your studies.
- Grading: Your final grade will be computed on the basis of the following tests:
-Two closed book tests, each gives 10 \% of final grade
-two home assignments (followed by presentation), each gives 10% of final grade
-final project, gives 60\% of the final grade
NB!!! In order to pass the course successfully you should complete all the assignments!!!

What is hybrid system?

- A hybrid system is a dynamical system with interacting time-triggered and event triggered dynamics
- For example differential equations and finite automata: $\dot{x}=f(x, u) \quad$ and $\quad q^{+}=g(q, v)$

State 2
Dynamics explaining behavior of this aircraft differ much from the one on the left side.

Hybrid Systems

Simple example of a hybrid system

Let us suppose that one have to switch between 3 following systems with continuous dynamics $\quad \dot{x}=-1 ; \quad \dot{x}=1 ; \quad \dot{x}=2$;

Hybric Autonaton

- A hybrid automaton is a formal model of a hybrid system.
- A hybrid automaton is a transition system that is extended with continuous dynamics. It consists of locations, transitions, invariants, guards, n-dimensional continuous functions, jump functions, and synchronization labels.
- Formal definition of the hybrid automaton:
- A hybrid automaton H is a tuple $H=(Q, V, f$, Init, Inv, $\Theta, G, R, \Sigma, \lambda)$,
- $Q=\left\{q_{l}, \ldots, q_{k}\right\}$ is a finite set of discrete states (control locations);
- $V=\left\{x_{l}, \ldots, x_{n}\right\}$ is a finite set of continuous variables;
- $f: Q \times R^{n} \rightarrow R^{n}$ is an activity function;
- Init $\subset Q \times R^{n}$ is the set of initial states;
- Inv : $Q \rightarrow 2 R^{n}$ describe the invariants of the locations;
- $\Theta \subseteq Q \times Q$ is the transition relation;
- $G: \Theta \rightarrow 2^{R n}$ is the guard condition;
- $R: \Theta \rightarrow 2^{R n} \times 2^{R n}$ is the reset map;
- $\quad \Sigma$ is a finite set of synchronization labels;
- $\lambda: \Theta \rightarrow \Sigma$ is the labeling function.

The automaton H describes a set of (hybrid) states $(q, \boldsymbol{x}) \in \boldsymbol{H}=\boldsymbol{Q} \times \boldsymbol{R}^{n}$.

- A hybrid automaton H is a tuple $H=(Q, V, f$, Init, Inv, $\Theta, G, R, \Sigma, \lambda)$,
- $Q=\left\{q_{1}, \ldots, q_{k}\right\}$ is a finite set of discrete states (control locations);
- $\Theta \subseteq Q \times Q$ is the transition relation;
- $G: \Theta \rightarrow 2^{R n}$ is the guard condition;
- $V=\left\{x_{p}, \ldots, x_{n}\right\}$ is a finite set of continuous variables;
- $f: Q \times R^{n} \rightarrow R^{n}$ is an activity function;
- Inv $: Q \rightarrow 2 R^{n}$ describe the invariants of the locations;
- $R: \Theta \rightarrow 2^{R n} \times 2^{R n}$ is the reset map;

Specifies discrete dynamics

Describes continuous dynamics \& its limitations

Necessary to synchronize different systems

- Init $\subset Q \times R^{n}$ is the set of initial states;
- Σ is a finite set of synchronization labels; $\lambda: \Theta \rightarrow \Sigma$ is the labeling function.

Schematic representation of a hybrid automato with three discrete states.

Hybrid Systems
Lecture1

Transition semantics of a hybrid automaton

Example: Thermostat

Write the formal definition of this hybrid control system?

Hybrid Systems

Example Two-tank system

Hybrid Systems
Lecture1
The two-tank system has two continuous state variables

$$
x(t)=\left(\begin{array}{ll}
h_{1}(t) & h_{2}(t)
\end{array}\right)^{T}, h_{i} \in R
$$

And four discrete states

$$
q(t) \in\{1,2,3,4\}
$$

Discrete modes in dependence of the continuous states:

$q(t)$	$h_{1}(t)$	$h_{2}(t)$
1	$<h_{0}$	$<h_{0}$
2	$\geq h_{0}$	$<h_{0}$
3	$<h_{0}$	$\geq h_{0}$
4	$\geq h_{0}$	$\geq h_{0}$

$Q_{i j}^{V}(t)=c \cdot \operatorname{sgn}\left(h_{i}(t)-h_{j}(t)\right) \cdot \sqrt{2 g \cdot\left|h_{i}(t)-h_{j}(t)\right|} \cdot u_{l}(t)$

The nonlinear dynamics follows from Torricelli's law:
Where Q is the water flow from tank T_{i} into tank T_{j} through the pipe with valve $V_{l .} c$ is the flow constant of the valves, $u_{l}(t)$ is the position of the valve V_{1} (0-closed, 1 - open).
The change of the water volume in a tank $\quad \dot{V}(t)=\dot{h}(t) \cdot A=\sum Q_{\text {in }}(t)-\sum Q_{\text {out }}(t)$
$\dot{h}_{1}(t)=\frac{u_{p_{1}}(t)-Q_{12}^{V_{2}}(t)-Q_{12}^{V_{2}}(t)-Q_{L}^{V_{1}}(t)}{A}$
$\dot{h}_{2}(t)=\frac{Q_{12}^{V_{1}^{1}}(t)-Q_{12}^{V_{2}}(t)-Q_{L}^{V_{2 L}}(t)-Q_{N}^{V_{212}}(t)}{A}$
The flow Q depends on the mode $\mathrm{q} \quad Q_{12}^{V_{1}}(t)=$ in a following way

$$
\left\{\begin{array}{l}
0, \quad q(t)=1, \\
c \cdot \operatorname{sgn}\left(h_{1}(t)-h_{0}\right) \cdot \sqrt{2 g\left|h_{1}(t)-h_{0}\right|} \cdot u_{1}(t), \quad q(t)=2, \\
c \cdot \operatorname{sgn}\left(h_{0}-h_{2}(t)\right) \cdot \sqrt{2 g\left|h_{0}-h_{2}(t)\right|} \cdot u_{1}(t), \quad q(t)=3, \\
c \cdot \operatorname{sgn}\left(h_{1}(t)-h_{2}(t)\right) \cdot \sqrt{2 g\left|h_{1}(t)-h_{2}(t)\right|} \cdot u_{1}(t), \quad q(t)=4,
\end{array}\right.
$$

$$
\begin{aligned}
& Q_{12}^{V_{2}(t)}=c \cdot \operatorname{sgn}\left(h_{1}(t)-h_{2}(t)\right) \cdot \sqrt{2 g\left|h_{1}(t)-h_{2}(t)\right|} \cdot u_{2}(t), \\
& Q_{N}^{V_{3}(t)}=c \cdot \sqrt{2 g \cdot h_{2}(t)} \cdot u_{3}(t), \\
& Q_{L}^{V_{i L}}=c \cdot \sqrt{2 g \cdot h_{i}(t)} \cdot d_{i}(t), \quad o=1,2,
\end{aligned}
$$

