Artificial Neural Networks

Ottokar Tilk 2014

Lecture scope

- Why should you care;
- Multilayer feedforward ANNs (Multilayer perceptrons);
- Training MLPs with backpropagation.

Why should you care?

From last lecture:

Perceptrons:

- Can't solve linearly inseparable problems (XOR);
- No probabilistic outputs;
- No multiclass classification.

MLPs can solve these problems.

What can ANNs do?

Classification (pattern recognition):

- Object recognition;
- Speech recognition;
- Handwritten text recognition.

Regression (function approximation):

• Stock market prediction.

01234 56789

... and more.

ANNs as the state of the art

- Image classification (MNIST, CIFAR etc...);
- Speech recognition.

http://rodrigob.github.

io/are_we_there_yet/build/classification_datasets_results. html

- 1.) Multiple layers;
- 2.) Feedforward;
- 3.) Nonlinear activations.

1.) Multiple layers;

Why more than one layer?

- Necessary to solve the linear separability problem;
- More powerful models (Deep learning).

Why feedforward?

- That's the definition;
- There are also:
 - Recurrent neural networks;
 - Competitive networks;
 - etc ...

Why nonlinear activations?

• Otherwise reduces to single layer

 $y = (x_1w_{1,1} + x_2w_{2,1})w_{3,1} + (x_1w_{1,2} + x_2w_{2,2})w_{3,2}$

Equivalent single layer network

Softmax activation function

- Elements sum to 1;
- All elements 0 < y(i) < 1;
- Output is a discrete probability distribution;
- Used in multiclass classification;
- A generalization of the logistic function.

$$y(i) = \frac{e^{z(i)}}{\sum_{j=1}^{k} e^{z(j)}}$$

Training MLPs with backpropagation

Backpropagation

- Supervised;
- Popular;
- Can find local minimum instead of global;
- May converge slowly or not at all.

Before training a MLP

- Split data into training, validation and test set;
- Set hyperparameters:
 - Number of layers and number of units per layer;
 - Learning rate;
- Choose error and activation functions.

Validation set

- Not used for training;
- Better estimator of real performance;
- Used for:
 - finding suitable hyperparameters;
 - early stopping to prevent overfitting.

Error functions

- Classification:
- Cross entropy (with softmax)

 $E = -\sum_{i=1}^{k} t_i \ln y_i$

Regression:

• Summed squared error

MLP training algorithm

Data: training- and validationData of input-target pairs; learningRate, layerSizes **Result**: trained network

```
net \leftarrow InitializeNetwork(layerSizes); validationError \leftarrow \infty;
```

```
 \begin{array}{c|c} \mathbf{for} \ epoch \leftarrow 1 \ \mathbf{to} \ maxEpochs \ \mathbf{do} \\ & \text{oldNet} \leftarrow \text{net}; \\ & \text{oldValidationError} \leftarrow \text{validationError}; \end{array}
```

```
net ← Train(net, trainingData, learningRate);
validationError ← Validate(net, validationData);
```

end

end

return net;

Training

Function Train(net, trainingData, learningRate) foreach input-target vector pair (x, t) in trainingData do /* y is an array of layer state vectors $y \leftarrow$ ForwardPropagate(net, x); gradients \leftarrow BackPropagate(net, x, t, y); net \leftarrow Update(net, gradients, learningRate); end return net;

Validation

Function Validate(*net*, *validationData*) \mid totalError $\leftarrow 0$;

```
foreach input-target vector pair (x, t) in validationData do

\begin{vmatrix} y \leftarrow ForwardPropagate(net, x); \\ totalError \leftarrow totalError + Error(y, t); \end{vmatrix}

end
```

averageError \leftarrow totalError / number of validation samples; return averageError;

Forward propagation

Function ForwardPropagate(net, x)

```
y \leftarrow ||;
k \leftarrow number of layers;
y_0 \leftarrow x;
for i \leftarrow 1 to k do
    /* W and f are layer weights and activation function */
   z_i \leftarrow y_{i-1} W_i;
y_i \leftarrow f_i(z_i);
y \leftarrow [y, y_i];
end
```

return y;

Backpropagation

```
Function BackPropagate(net, x, t, y)
       gradients \leftarrow [];
        k \leftarrow number of layers;
        y_0 \leftarrow x;
        \frac{\partial E}{\partial u_k} \leftarrow \text{ErrorDerivative}(t, y_k);
        for i \leftarrow k to 1 do
               \frac{\partial E}{\partial z_i} \leftarrow \frac{\partial E}{\partial y_i} * \frac{dy_i}{dz_i};
            \frac{\partial \tilde{E}}{\partial W_i} \leftarrow y_{i-1}^T \frac{\partial \tilde{E}}{\partial z_i};
             gradients \leftarrow \begin{bmatrix} \frac{\partial E}{\partial W_i} \end{bmatrix}; gradients];
              if i > 1 then
                 \frac{\partial E}{\partial y_{i-1}} = \frac{\partial E}{\partial z_i} W_i^T;
                end
```

 \mathbf{end}

return gradients;

Updating the model

Function Update(net, gradients, learningRate)

 $k \leftarrow$ number of layers; for $i \leftarrow 1$ to k do $| W_i \leftarrow W_i - learningRate \frac{\partial E}{\partial W_i};$ end return net;

Example
$$z_1(j) = \sum_{i=1}^m x(i)W_1(i,j)$$
 $z_2(k) = \sum_{j=1}^n y_1(j)W_2(j,k)$
 $y_1(j) = \frac{1}{1+e^{-z_1(j)}}$ $y_2(k) = \frac{e^{z_2(k)}}{\sum_{l=1}^o e^{z_2(l)}}$ $E = -\ln y_2(c)$

Thank you!