
Machine Learning
Supervised learning 4: Support Vector Machines

S. Nõmm

1Department of Software Science, Tallinn University of Technology

05.03.2024

S. Nõmm (CS TalTech) Machine Learning 05.03.2024 1 / 23

Separability

Linear separability

Two classes are said to be linearly separable in Rn -if there exists a
hyperplane dividing the space into two subspaces such that all the
elements of the first class belong to one subspace and the elements of the
second class belong to the other subspace.
Or
-if there exist n - dimensional vector a and scalar b such that for the
elements of one class xTa > b and for the elements of the second class
xTa < b

S. Nõmm (CS TalTech) Machine Learning 05.03.2024 2 / 23

Separability
If two classes are linearly separable it is possible to construct two
hyperplanes, parallel to the ”separating” hyperplane, such that first
hyperplane would contain at least one point of the first class and
second hyperplane will contain at least one point of the second class.

The training data points belonging to these hyperplanes are referred
as support vectors and the distance between the hyperplanes is
referred as margin.

In order to determine maximum margin hyperplane nonlinear
programming optimization is required. First margin is expressed as
the function of the coefficients of separating hyperplane. Second
optimization problem is solved.

-10 -8 -6 -4 -2 0 2 4 6 8 10

dimension 1

-8

-6

-4

-2

0

2

4

6

8

di
m

en
si

on
 2

S. Nõmm (CS TalTech) Machine Learning 05.03.2024 3 / 23

Maximum margin hyperplane

For the hyperplane xTa+ b vector a = (a1, . . . , an) is n - dimensional
vector representing the normal direction to the hyperplane.

Then the distance (margin) from the separating hyperplane to the
hyperplanes containing points of each class (see previous slide) would
be M = ||a||−1.

The optimization problem may be stated in terms of finding vector a
that would maximize margin

S. Nõmm (CS TalTech) Machine Learning 05.03.2024 4 / 23

Hard and Soft Margin cases

Hard margin case is depicted by the left figure and soft margin by the
figure on the right side.

-20 -15 -10 -5 0 5 10 15 20

dimension 1

-12

-10

-8

-6

-4

-2

0

2

4

6

8

di
m

en
si

on
 2

-10 -5 0 5 10

dimension 1

-6

-4

-2

0

2

4

6

di
m

en
si

on
 2

S. Nõmm (CS TalTech) Machine Learning 05.03.2024 5 / 23

Linear Case: Hard-Margin case

00 Tx

1
M

S. Nõmm (CS TalTech) Machine Learning 05.03.2024 6 / 23

Linear Case: Hard-Margin case
Let N pairs (xi, yi) where i = 1, . . . N constitute the training data;
xi ∈ R and yi ∈ {−1, 1}.
Define the hyperplane as {x : f(x) = xT b1 + b0 = 0}, where ||b|| = 1.

Classification rule induced by f(x) is

G(x) = sign[xT b1 + b0].

Classes are separable ⇒ ∃f(x) = xT b1 + b0 : yif(xi) > 0, ∀i.
One is able to find the hyperplane that creates the biggest margin
between the training points leads following optimization problem:

max
b1,b0,||b||=1

M

subject to yi(x
T b1 + b0) ≥ M, i = 1, . . . , N,

or in a more convenient form:

min
b1,b0

||b||

subject to yi(x
T b1 + b0) ≥ 1, i = 1, . . . , N ; M = 1/||b||

S. Nõmm (CS TalTech) Machine Learning 05.03.2024 7 / 23

Linear Case: Soft-Margin case

00 Tx

1
M

*

1

*

2

*

3

*

4

*

5

S. Nõmm (CS TalTech) Machine Learning 05.03.2024 8 / 23

Linear Case: Soft-Margin case

If the classes in training data overlap then we are talking about soft
margin case.

One of the possible way is to maximize M, whereas it is allowed to
some points to be on the ”wrong” side of the plane.

Define the slack variables ξ = (ξ1, . . . , ξN)

The first way to modify optimization problem is
yi(x

T b1 + b0) ≥ M − ξi. (results in a non-convex optimization
problem).

The second way is yi(x
T b1 + b0) ≥ M(1− ξi). (results in a convex

optimization problem).

∀i, ξi ≥ 0,
∑N

i=1 ξi is limited by some constant

The second way leads to the standard vector classifier.

S. Nõmm (CS TalTech) Machine Learning 05.03.2024 9 / 23

Soft-Margin case
For the case when classes are allowed to overlap some points are
allowed to be on the ’wrong’ side of the hyperplane. The distances of
these points from their margin are denoted as ξi.

The first way to describe the constraint is

yi(x
T
i b1 + b0) ≥ M − ξi

In this form constraint described overlap in actual distance but lead
non convex optimization problem.

The second way is

yi(x
T
i b1 + b0) ≥ M(1− ξi)

In this form overlap is described in relative distance but lead convex
optimization problem. ξ is the proportional amount by which the
prediction f(xi) = xTi b1 + b0 is on the wrong side of its margin.

Bounding sum of ξi allows to bound the total proportion amount by
which the predictions fall into ’wrong’ side of their margin.
Misclassifications occur when ξi > 1 .

S. Nõmm (CS TalTech) Machine Learning 05.03.2024 10 / 23

Lagrangian theory
The goal is to find separating hyperplane maximizing the margin.

This problem may be seen as the minimization of a function with additional
constraints described by linear equations.

Denote function to be minimized as f(θ) and let constraints be presented by
hi(θ) = 0, i = 1, . . . ,m. Lagrangian function is defined as follows

L(θ, β) = f(θ) +

m∑
i=1

βihi(θ)

coefficients βi are called Lagrange multipliers.

Necessary condition for point θ∗ to be a minimum of f(θ) subject to
hi(θ) = 0, i = 1, . . . ,m is

∂L(θ∗, β∗)

∂θ
= 0

∂L(θ∗, β∗)

∂β
= 0

if L is convex function then this condition is also sufficient.

S. Nõmm (CS TalTech) Machine Learning 05.03.2024 11 / 23

Example

Maximize: f(x1, x2) = 1− x21 − x22
Subject to h(x1, x2) = x1 + x2 − 1 = 0

Computed in class.

solution x∗ = (0.5, 0.5) and β = 1.

S. Nõmm (CS TalTech) Machine Learning 05.03.2024 12 / 23

Objective functions and corresponding Lagrangians
Hard margin case

min
θ,b

1

2
||θ||2

yi(θ
TXi + b) ≥ 1,∀i

Lagrangian for the hard margin SVM is:

L(θ, b, α) =
1

2
||θ||2 −

n∑
i=1

αi(yi(θ
TXi + b)− 1).

Soft margin case

min
θ,b

1

2
||θ||2 + C

∑
i

ξi

yi(θ
TXi + b) ≥ 1− ξi, ∀i

ξi ≥ 0∀i

Lagrangian for the soft margin SVM is:

L(θ, b, ξ, α, β) =
1

2
||θ||2 + C

n∑
i=1

ξi−
n∑

i=1

µiξi −
n∑

i=1

αi[yi(θ
TXi + b)− 1 + ξi]

S. Nõmm (CS TalTech) Machine Learning 05.03.2024 13 / 23

Solution

Lagrangian (Wolfe) dual objective function.

LD =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj⟨Xi ·Xj⟩

subject to C ≥ α ≥ 0, i = 1, . . . , n.

S. Nõmm (CS TalTech) Machine Learning 05.03.2024 14 / 23

Support Vector Machines: nonlinear case

Let the decision boundary between two classes is given by

8(x1 − 1)2 + 50(x2 − 2)2 = 1

may be easily rewritten as

8x21 − 16x1 + 50x22 − 200x2 + 207 = 0

It may be expressed linearly in terms of four variables z1 = x21,
z2 = x1, z3 = x22 and z4 = x2 as

8z1 − 16z2 + 50z3 − 200z4 + 207 = 0

The only drawback of this approach is that it requires to perform
transformation explicitly.

S. Nõmm (CS TalTech) Machine Learning 05.03.2024 15 / 23

The Kernel trick
Lagrangian (Wolfe) dual objective function.

LD =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj⟨Xi ·Xj⟩

subject to C ≥ α ≥ 0, i = 1, . . . , n.

Observe that this problem may be solved not in terms of data points
but in terms of their dot products. This leads the idea to define
similarity function on the transformed representation with use of so
called kernel function.

K(Xi, Xj) = Φ(Xi) · Φ(Xj)

In this case Lagrangian (Wolfe) dual objective function will take shape

LD =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjK(Xi, Xj).

Corresponding equation of the decision boundary Φ(X)Ta+ b

S. Nõmm (CS TalTech) Machine Learning 05.03.2024 16 / 23

Kernel functions

Kernel function is real valued function of two arguments k(x, x′) ∈ R for
x, x′ ∈ X . Typically the function is

symmetric k(x, x′) = k(x′, x)

nonnegative k(x, x′) ≥ 0.

It may be interpreted as distance function.

S. Nõmm (CS TalTech) Machine Learning 05.03.2024 17 / 23

Examples I:RBF

RBF (radial base function) kernels:
▶ Squared exponential kernel or Gaussian kernel

k(x, x′) = exp
(
−1

2
(x− x′)Σ−1(x− x′)

)
▶ if Σ is spherical then gaussian kernel becomes RBF:

k(x, x′) = exp
(
−||x− x′||2

2σ2

)

S. Nõmm (CS TalTech) Machine Learning 05.03.2024 18 / 23

Examples II: comparing documents
Cosine distance:

k(xi, xi′) =
xTi xi′

||xi||2||xi′ ||2
apply TF-IDF representation

tf(xij) ≜ log(1 + xi,j)

idf(j) ≜ log
N

1−
∑N

i=1 I(xij > 0)

TF-IDF representation is given by:

tf − idf(xi) ≜ [tf(xi)
T × idf(j)]Vj=1

corresponding kernel function is

k(xi, xi′) =
ϕ(xi)

Tϕ(xi′)

||ϕ(xi)||2||ϕ(xi′)||2

where ϕ(x) = tf − idf(x).

S. Nõmm (CS TalTech) Machine Learning 05.03.2024 19 / 23

Examples III: Mercer (positive defined kernels)
Some methods require that the kernel function satisfy the condition
that Gram matrix:

K =

k(X1, X1) . . . k(X1, XN)
...

k(XN , X1) . . . k(XN , XN)

be positive define for any set of inputs. kernels satisfying this
condition are called Mercer kernels or positive definite kernels.

Mercer’s theorem states, that if the gram matrix is positive define
eigenvector decomposition may be computed as follows: K = UTΛU .

An element of K is therefore ki,j = (Λ
1
2U:i)

T (Λ
1
2U:j). Let

ϕ(xi) = Λ
1
2U:i, which leads kij = ϕ(x)Tϕ(x′).

The entries of the kernel matrix can be computed by performing an
inner product of some feature vectors. In general if the kernel is
Mercer then there exists a function ϕ mapping x ∈ X to RD such
that: k(x, x′). Where ϕ depends on eigenfunctions of K.

S. Nõmm (CS TalTech) Machine Learning 05.03.2024 20 / 23

Examples III: Mercer (positive defined kernels)

If K1 and K2 are Mercer’s kernels then

K1(x1, x2) +K2(x1, x2),

aK1(x1, x2), a ∈ R,
K1(x1, x2)K2(x1, x2)

exp(K1(x1, x2)),

are Mercer’s kernels

S. Nõmm (CS TalTech) Machine Learning 05.03.2024 21 / 23

The kernel trick: most popular kernel functions

K should be a symmetric positive define function.

n -th Degree polynomial K(xi, xj) = (1 + xi · xj)n.
Radial basis K(xi, xj) = exp(−γ||xi − xj ||2).
Sigmoid kernel K(xi, xj) = tanh(k1xi · xj + k2).

S. Nõmm (CS TalTech) Machine Learning 05.03.2024 22 / 23

The Kernel trick

Instead of defining feature vector in terms of kernels one can work
with original feature vectors x.

This approach requires one to modify algorithm so that it replaces all
inner products of the form ⟨x, x′⟩ with the call to the kernel function
k(x, x′). This approach is referred as kernel trick.

one can kernelize many ML algorithms:

Kernelized nearest neighbor classifier:
||xi − xi′ ||22 = ⟨xi, xj⟩+ ⟨x′i, x′j⟩ − 2⟨xi, x′j⟩. In such form nearest
neighbour classifier may be applied to non structured data objects.

Kernelized: k-medoids algorithm, ridge regression,PCA etc.

S. Nõmm (CS TalTech) Machine Learning 05.03.2024 23 / 23

