
 Formal methods Lecture 12

Concurrency and Communication with Shared

Variables

Lecture is based on the book by

Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman,

Yassine Lakhnech, Mannes Poel, and Job Zwiers. Concurrency

Verification: Introduction to Compositional and Noncompositional

Methods

Non-deterministic programs

We use shortened notation:

if []n
i=1 bi  Si fi  []n

i=1 bi  Si

do []n
i=1 bi  Si od  ([]n

i=1 bi  Si)

Recall: proof system for

sequential programs

Axioms:

{p} skip {p}

{q[e/x]} x:=e {q}

Derived rules:

 p  q

 {p} skip {q}

 p  q[e/x]

 {p} x:=e {q}

Consequence rule:

 

Proof Outline

PO (Proof Outline) is Hoare triple (with annotated program) for which all the

verification conditions (VC) are provable using given program annotations.

Example of PO:

{ x = a }

x := x +1;

 { x = a +1}

skip

{ x +a= 2a +1}

Annotated commands:

If not assignment

Annotated commands













Parallel programming language

with shared variables

Command

commands

Execution model: atomicity and

interleaving

What is the value of x after the execution of the following program?

 (x := 0; x := x +2) || (x := 1; x := x +3)

Interleaving semantics: only one atomic action of one of the processes that is not

in the waiting state is executed at a time. It is called interleaving of atomic actions.

It can be either 2, 4, 5 or 6.

Proof system for parallel programs

All the rules and axioms of the sequential (non-deterministic) programs apply,

but we need new rules for new consturcts await and ||.

But the last rule about parallel composition is not valid. Consider:

 { x = 0} x := x +2 { x = 2} and { x = 0} y := x { y = 0} are POs,

 but { x = 0} x := x +2 || y := x { x = 2 /\ y = 0} is not valid

Interference freedom

 Annotation specifies the constraint what program variables have to satisfy

when the execution has reached the place/state where annotation is written.

 It is difficult to locate the place for annotations in the parallel program because

the global annotations should take into account all possible interleavings.

 It is not enough to prove the correcness of processes locally.

 Local annotations suffice only if we can prove that other processes do not

interfere with the validity of assertions in this process.

Definition: The POs {pi} ASi {qi} i =1, … , n are interference free iff for all

i,j  {1, … , n }, i  j, for every assertion r in {pj} ASj {qj} we have that if

Si is x := e or await b then S0 end occurs in {pi} ASi {qi} with precondition ri

then {ri /\ r} Si {r}.

Proof rules for shared-variable

parallel programs
Axioms:

{p} skip {p}

{q[e/x]} x:=e {q}

Consequence rule:

 

Example
Prove that { x = 0 } x := x + 1 || x := x + 2 { x = 3 }

{x = 0  x = 2}

{x = 0  x = 1}

{x = 1  x = 3}

{x = 2  x = 3}

{ x = 0 } x := x + 1 || x := x + 2 { x = 3 }

Add the annotations:

The global precondition implies the local preconditions of the processes and

the local postconditions imply the global postcondition:

˫ (x = 0)  (x = 0  x = 2)  (x = 0  x = 1)

˫ (x = 1  x = 3)  (x = 2  x = 3)  (x = 3)

Each processes are POs:

 ˫ {x = 0  x = 2} x := x + 1 {x = 1  x = 3}

 ˫ {x = 0  x = 1} x := x + 2 {x = 2  x = 3}

Example: interference test

{x = 0  x = 2}

{x = 0  x = 1}

{x = 1  x = 3}

{x = 2  x = 3}

{ x = 0 } x := x + 1 || x := x + 2 { x = 3 }

P1 does not interfere to P2 local precondition

 ˫ {(x = 0  x = 2)  (x = 0  x = 1)} x := x + 1{ x = 0  x = 1}

P1 does not interfere to P2 local postcondition

 ˫ {(x = 0  x = 2)  (x = 2  x = 3)} x := x + 1{ x = 2  x = 3}

P2 does not interfere to P1 local precondition

 ˫ {(x = 0  x = 1)  (x = 0  x = 2)} x := x + 2{ x = 0  x = 2}

P2 does not interfere to P1 local postcondition

 ˫ {(x = 0  x = 1)  (x = 1  x = 3)} x := x + 2{ x = 1  x = 3}

A problem

We cannot prove that

 { x = 0 } x := x + 1 || x := x + 1 { x = 2 }

because POs

 {(x = 0  x = 1)} x := x + 1{ x = 1  x = 2}

 {(x = 0  x = 1)} x := x + 1{ x = 1  x = 2}

are not interference free:

 {(x = 0  x = 1)  (x = 0  x = 1)} x := x + 1{ x = 0  x = 1}

and the conjunction of local postconditions does no imply postcondition

 { x = 1  x = 2}  { x = 1  x = 2}  { x = 2 }

˫

˫

Conclusions

 Proving the properties of parallel programs is hard

 There is an exponential amount of verification conditions to check

 one VC for every command in all processes for every assignment

 The presented proof method is not compositional for parallel composition

 it is not possible to do parallel composition of processes knowing only

the pre- and postcondition of the local process.

 If the specification is proved for the whole parallel program then it is

possible to compose it sequentially to other programs looking only at pre-

and postcondition

 A Rely-Guarantee method exists which has a compositional parallel

composition property also

Exercise

Prove that

using PO:

 

 

Exercise
1. Annotate and prove the correctness of the following triple

