Formal methods	Lecture 12
Concurrency and Communication with Shared Variables	
Lecture is based on the book by Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman, Yassine Lakhnech, Mannes Poel, and Job Zwiers. <i>Concurrency</i> <i>Verification: Introduction to Compositional and Noncompositional</i> <i>Methods</i>	

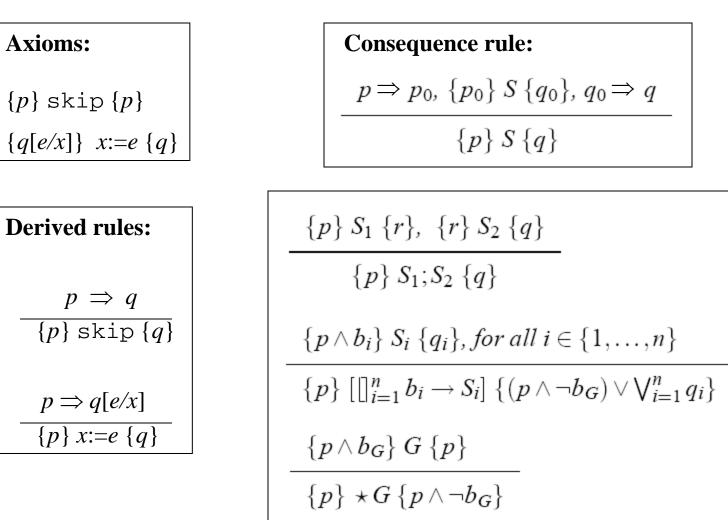
Non-deterministic programs

Value Expression	e ::=	$\mu \mid x \mid e_1 + e_2 \mid e_1 - e_2 \mid e_1 \times e_2$
Boolean Expression	b ::=	$e_1 = e_2 \mid e_1 < e_2 \mid \neg b \mid b_1 \lor b_2$
Statement	S ::=	$\mathbf{skip} \mid x := e \mid S_1; S_2 \mid G \mid \star G$
Guarded Command	G ::=	$\left[\prod_{i=1}^{n} b_i \to S_i \right]$

- Guarded command [[]ⁿ_{i=1}b_i → S_i], also written as [b₁ → S₁[] ... []b_n → S_n], terminates if none of the boolean guards b_i evaluate to true. Otherwise, non-deterministically select one of the b_i that evaluates to true and execute the corresponding statement S_i.
- Iteration $\star G$ indicates repeated execution of guarded command G as long as at least one of the guards evaluates to true. When none of the guards evaluate to true $\star G$ terminates.

We use shortened notation:

Recall: proof system for sequential programs



Proof Outline

PO (Proof Outline) is Hoare triple (with annotated program) for which all the verification conditions (VC) are provable using given program annotations.

Example of PO:

{ x = a }
x := x +1;
{ x = a +1}
skip
{ x +a= 2a +1}

Annotated commands:

 $AS ::= \mathbf{skip} \mid x := e \mid \mathbf{await} \ b \ \mathbf{then} \ S \ \mathbf{end} \mid AS_1; \{p\}AS_2 \mid AG \mid \star \{p\}AG$ $AG ::= \left[\begin{bmatrix} n \\ i=1 \end{bmatrix} b_i \rightarrow \{p_i\}AS_i \{q_i\} \end{bmatrix}$

If not assignment

Annotated commands

 $AS ::= skip | x := e | await b then S end | AS_1; \{p\}AS_2 | AG | \star \{p\}AG$ $AG ::= [\begin{bmatrix} n \\ i=1 \end{bmatrix} b_i \to \{p_i\}AS_i \{q_i\}]$

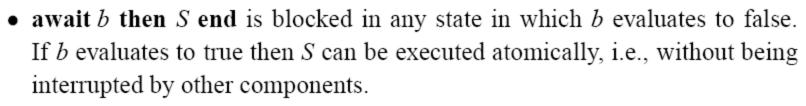
- $\{p\}$ skip $\{q\}$ is a proof outline iff $p \leftrightarrow q$.
- $\{p\} x := e \{q\}$ is a proof outline iff $p \Rightarrow q[e/x]$.
- {p} await b then S end {q} is a proof outline iff there exists a proof outline

 $\{p \land b\} AS \{q\} with Progr(AS) = S.$

- {*p*} *AS*₁; {*r*} *AS*₂ {*q*} *is a proof outline iff* {*p*} *AS*₁ {*r*} *and* {*r*} *AS*₂ {*q*} *are proof outlines.*
- $\{p\} [[]_{i=1}^{n} b_{i} \rightarrow \{p_{i}\} AS_{i} \{q_{i}\}] \{q\} \text{ is a proof outline iff } p \land b_{i} \Rightarrow p_{i} and p \land \neg(\bigvee_{i=1}^{n} b_{i}) \Rightarrow q \text{ hold, } \{p_{i}\} AS_{i} \{q_{i}\} are proof outlines, for i = 1, ..., n, and <math>\bigvee_{i=1}^{n} q_{i} \Rightarrow q$.
- $\{p\} \star \{I\} AG \{q\}$ is a proof outline iff $p \Rightarrow I$, $\{I \land b_{AG}\} AG \{I\}$ is a proof outline, and $I \land \neg b_{AG} \Rightarrow q$.

Parallel programming language with shared variables

Expression	e ::=	$\vartheta \mid x \mid e_1 + e_2 \mid e_1 - e_2 \mid e_1 \times e_2$
Boolean Expression	b ::=	$e_1 = e_2 \mid e_1 < e_2 \mid \neg b \mid b_1 \lor b_2$
Command	S ::=	skip $ x := e $ await b then S end
		$S_1; S_2 \mid G \mid \star G$
Guarded Command	G ::=	$\left[\prod_{i=1}^{n} b_i \to S_i \right]$
Program	P ::=	$S_1 \parallel \cdots \parallel S_n$



- $S_1 \| \cdots \| S_n$ indicates parallel execution of the commands S_1, \ldots, S_n . The components S_1, \ldots, S_n of a parallel composition are often called *processes*.
- await $b \equiv$ await b then skip end
- $\langle S \rangle \equiv$ await *true* then S end

The brackets $< \cdots >$ are sometimes called "Lamport brackets" and < S > is also called a "bracketed section" or "atomic region".

Execution model: atomicity and interleaving

- An assignment x := e is executed *atomically*, that is, during its execution other parallel processes may not change x or the variables occurring in *e*.
- For an await statement **await** b **then** S **end** we assume that S is executed atomically in a state where b holds.
- Concurrent processes proceed asynchronously. No assumptions are made about the relative speed at which processes execute their actions.

Interleaving semantics: only one atomic action of one of the processes that is not in the waiting state is executed at a time. It is called interleaving of atomic actions.

What is the value of *x* after the execution of the following program?

 $(x := 0; x := x + 2) \parallel (x := 1; x := x + 3)$

It can be either 2, 4, 5 or 6.

Proof system for parallel programs

All the rules and axioms of the sequential (non-deterministic) programs apply, but we need new rules for new consturcts **await** and \parallel .

 $\{p \wedge b\} S \{q\}$

 $\{p\}$ await b then S end $\{q\}$

There exist proof outlines
$$\{p_i\}AS_i\{q_i\}, i = 1, ..., n$$
.
 $\{p_1 \land ... \land p_n\} Progr(AS_1) \parallel ... \parallel Progr(AS_n) \{q_1 \land ... \land q_n\}$

But the last rule about parallel composition is not valid. Consider:

{
$$x = 0$$
} $x := x + 2$ { $x = 2$ } and { $x = 0$ } $y := x$ { $y = 0$ } are POs,
but { $x = 0$ } $x := x + 2 || y := x$ { $x = 2 \land y = 0$ } is not valid

Interference freedom

- Annotation specifies the constraint what program variables have to satisfy when the execution has reached the place/state where annotation is written.
- It is difficult to locate the place for annotations in the parallel program because the global annotations should take into account all possible interleavings.
- It is not enough to prove the correcness of processes locally.
- Local annotations suffice only if we can prove that other processes do not interfere with the validity of assertions in this process.

Definition: The POs $\{p_i\} AS_i \{q_i\} i = 1, ..., n$ are *interference free* iff for all $i, j \in \{1, ..., n\}, i \neq j$, for every assertion r in $\{p_j\} AS_j \{q_j\}$ we have that if S_i is x := e or await b then S_0 end occurs in $\{p_i\} AS_i \{q_i\}$ with precondition r_i then $\{r_i \land r\} S_i \{r\}$.

There exist proof outlines $\{p_i\}AS_i\{q_i\}$, i = 1, ..., n, that are interference free

 $\{p_1 \land \ldots \land p_n\} \operatorname{Progr}(AS_1) \parallel \ldots \parallel \operatorname{Progr}(AS_n) \{q_1 \land \ldots \land q_n\}$

Proof rules for shared-variable parallel programs

Axioms:

 $\{p\}$ skip $\{p\}$

 $\{q[e/x]\}\ x:=e\ \{q\}$

Consequence rule:

$$\frac{p \Rightarrow p_0, \{p_0\} S \{q_0\}, q_0 \Rightarrow q}{\{p\} S \{q\}}$$

 $\{p \wedge b\} S \{q\}$

 $\{p\}$ await b then S end $\{q\}$

$$\{p\} S_1 \{r\}, \{r\} S_2 \{q\}$$

$$\{p\} S_1; S_2 \{q\}$$

$$\{p \land b_i\} S_i \{q_i\}, \text{ for all } i \in \{1, \dots, n\}$$

$$\{p\} [[]_{i=1}^n b_i \to S_i] \{(p \land \neg b_G) \lor \bigvee_{i=1}^n q_i\}$$

$$\{p \land b_G\} G \{p\}$$

$$\{p\} \star G \{p \land \neg b_G\}$$

There exist proof outlines $\{p_i\}AS_i\{q_i\}$, i = 1, ..., n, that are interference free

 $\{p_1 \land \ldots \land p_n\} \operatorname{Progr}(AS_1) \parallel \ldots \parallel \operatorname{Progr}(AS_n) \{q_1 \land \ldots \land q_n\}$

Example

Prove that {
$$x = 0$$
 } $x := x + 1$ || $x := x + 2$ { $x = 3$ }

Add the annotations:

$$\{x = 0 \lor x = 2\}$$
 { $x = 1 \lor x = 3$ }
{ $x = 0$ } $x := x + 1$ || $x := x + 2$ { $x = 3$ }
{ $x = 0 \lor x = 1$ } { $x = 2 \lor x = 3$ }

The global precondition implies the local preconditions of the processes and the local postconditions imply the global postcondition:

$$+ (x = 0) \implies (x = 0 \lor x = 2) \land (x = 0 \lor x = 1)$$

$$+ (x = 1 \lor x = 3) \land (x = 2 \lor x = 3) \Longrightarrow (x = 3)$$

Each processes are POs:

+ {
$$x = 0 \lor x = 2$$
} $x := x + 1$ { $x = 1 \lor x = 3$ }
+ { $x = 0 \lor x = 1$ } $x := x + 2$ { $x = 2 \lor x = 3$ }

Example: interference test

$$\{x = 0 \lor x = 2\}$$
 { $x = 1 \lor x = 3$ }
{ $x = 0$ } $x := x + 1$ || $x := x + 2$ { $x = 3$ }
{ $x = 0 \lor x = 1$ } { $x = 2 \lor x = 3$ }

P1 does not interfere to P2 local precondition

+ { $(x = 0 \lor x = 2) \land (x = 0 \lor x = 1)$ } x := x + 1{ $x = 0 \lor x = 1$ } P1 does not interfere to P2 local postcondition

+ { $(x = 0 \lor x = 2) \land (x = 2 \lor x = 3)$ } x := x + 1{ $x = 2 \lor x = 3$ } P2 does not interfere to P1 local precondition

+ { $(x = 0 \lor x = 1) \land (x = 0 \lor x = 2)$ } x := x + 2{ $x = 0 \lor x = 2$ } P2 does not interfere to P1 local postcondition

 $\vdash \{(x = 0 \lor x = 1) \land (x = 1 \lor x = 3)\} \ x := x + 2\{ \ x = 1 \lor x = 3 \}$

A problem

We cannot prove that ${x = 0} x := x + 1 || x := x + 1 {x = 2}$ because POs ${(x = 0 \lor x = 1)} x := x + 1{x = 1 \lor x = 2}$ ${(x = 0 \lor x = 1)} x := x + 1{x = 1 \lor x = 2}$ are not interference free:

$$\{ (x = 0 \lor x = 1) \land (x = 0 \lor x = 1) \} \ x := x + 1 \{ x = 0 \lor x = 1 \}$$

and the conjunction of local postconditions does no imply postcondition

$$\land \{ x = 1 \lor x = 2 \} \land \{ x = 1 \lor x = 2 \} \Longrightarrow \{ x = 2 \}$$

Conclusions

- Proving the properties of parallel programs is hard
- There is an exponential amount of verification conditions to check
 - one VC for every command in all processes for every assignment
- The presented proof method is not compositional for parallel composition
 - it is not possible to do parallel composition of processes knowing only the pre- and postcondition of the local process.
- If the specification is proved for the whole parallel program then it is possible to compose it sequentially to other programs looking only at preand postcondition
- A Rely-Guarantee method exists which has a compositional parallel composition property also

Exercise

Prove that

$$\{ \neg done_1 \land \neg done_2 \land x = 0 \} \\ < x := x + 1; done_1 := true > || < x := x + 1; done_2 := true > \\ \{x = 2\}.$$

using PO:

$$\{ \neg done_1 \land (\neg done_2 \Rightarrow x = 0) \land (done_2 \Rightarrow x = 1) \}$$

$$< x := x + 1; done_1 := true >$$

$$\{ done_1 \land (\neg done_2 \Rightarrow x = 1) \land (done_2 \Rightarrow x = 2) \}$$

Exercise

1. Annotate and prove the correctness of the following triple

$$\{x \ge 0\} \ y := 1; \star [y \times y \le x \to y := y+1]; y := y-1 \ \{y^2 \le x < (y+1)^2\}$$