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Non-deterministic programs 

We use shortened notation: 

if   []n
i=1 bi  Si fi         []n

i=1 bi  Si  

do  []n
i=1 bi  Si od     ([]n

i=1 bi  Si) 



Recall: proof system for 

sequential programs 

Axioms: 

 

{p} skip {p} 

{q[e/x]}  x:=e {q} 

Derived rules:      

 

      p    q 

 {p} skip {q} 

 

  p  q[e/x] 

 {p} x:=e {q} 

Consequence rule: 

  



Proof Outline 

PO (Proof Outline) is Hoare triple (with annotated program) for which all the 

verification conditions (VC) are provable using given program annotations. 

  

Example of PO: 

{ x = a } 

x := x +1; 

   { x = a +1} 

skip 

{ x +a= 2a +1} 

Annotated commands: 

If not assignment 



Annotated commands 

 

 

 

 

 

 



Parallel programming language 

with shared variables 

Command 

commands 



Execution model: atomicity and 

interleaving 

What is the value of x after the execution of the following program? 

 (x := 0; x := x +2) || (x := 1; x := x +3)  

Interleaving semantics: only one atomic action of one of the processes that is not 

in the  waiting state is executed at a time. It is called interleaving of atomic actions. 

It can be either 2, 4, 5 or 6. 



Proof system for parallel programs 

All the rules and axioms of the sequential (non-deterministic) programs apply, 

but we need new rules for new consturcts await and ||. 

But the last rule about parallel composition is not valid. Consider: 

   

  { x = 0}  x := x +2 { x = 2}  and { x = 0}  y := x { y = 0} are POs, 

  but { x = 0}  x := x +2 || y := x { x = 2 /\ y = 0} is not valid 



Interference freedom 

 Annotation specifies the constraint what program variables have to satisfy 

when the execution  has reached the place/state where annotation is written. 

 It is difficult to locate the place for annotations in the parallel program because 

the global annotations should take into account all possible interleavings. 

 It is not enough to prove the correcness of processes locally.  

 Local annotations suffice only if we can prove that other processes do not 

interfere with the validity of assertions in this process. 
 

Definition: The POs {pi} ASi {qi} i =1, … , n  are interference free iff for all  

i,j  {1, … , n }, i  j, for every assertion r in {pj} ASj {qj} we have that if  

Si  is  x := e  or  await b then S0 end occurs in {pi} ASi {qi} with precondition ri 

then {ri  /\  r} Si {r}. 



Proof rules for shared-variable 

parallel programs 
Axioms: 

 

{p} skip {p} 

{q[e/x]}  x:=e {q} 

Consequence rule: 

  



Example 
Prove that { x = 0 }  x := x + 1   ||   x := x + 2   { x = 3 }  

{x = 0  x = 2} 

{x = 0  x = 1} 

{x = 1  x = 3} 

{x = 2  x = 3} 

{ x = 0 }  x := x + 1   ||   x := x + 2   { x = 3 } 

Add the annotations: 

The global precondition implies the local preconditions of the processes and  

the local postconditions imply the global postcondition: 

˫  (x = 0)   (x = 0  x = 2)  (x = 0  x = 1)  

˫  (x = 1  x = 3)  (x = 2  x = 3)  ( x = 3) 

Each processes are POs: 

  ˫ {x = 0  x = 2} x := x + 1 {x = 1  x = 3}   

  ˫ {x = 0  x = 1} x := x + 2 {x = 2  x = 3}  



Example: interference test 

{x = 0  x = 2} 

{x = 0  x = 1} 

{x = 1  x = 3} 

{x = 2  x = 3} 

{ x = 0 }  x := x + 1   ||   x := x + 2   { x = 3 } 

P1 does not interfere to P2 local precondition 

  ˫ {(x = 0  x = 2)  (x = 0  x = 1)} x := x + 1{ x = 0  x = 1} 

P1 does not interfere to P2 local postcondition 

  ˫ {(x = 0  x = 2)  (x = 2  x = 3)} x := x + 1{ x = 2  x = 3} 

P2 does not interfere to P1 local precondition 

  ˫ {(x = 0  x = 1)  (x = 0  x = 2)} x := x + 2{ x = 0  x = 2} 

P2 does not interfere to P1 local postcondition 

  ˫ {(x = 0  x = 1)  (x = 1  x = 3)} x := x + 2{ x = 1  x = 3} 

 



A problem 

We cannot prove that 

  { x = 0 }  x := x + 1   ||   x := x + 1   { x = 2 } 

because POs  

 {(x = 0  x = 1)} x := x + 1{ x = 1  x = 2} 

 {(x = 0  x = 1)} x := x + 1{ x = 1  x = 2} 

are not interference free: 

   {(x = 0  x = 1)  (x = 0  x = 1)} x := x + 1{ x = 0  x = 1} 

 

and the conjunction of local postconditions does no imply postcondition 

   { x = 1  x = 2}  { x = 1  x = 2}  { x = 2 } 

 

˫ 

˫ 



Conclusions 

 Proving the properties of parallel programs is hard 

 There is an exponential amount of verification conditions to check 

 one VC for every command in all processes for every assignment 

 The presented proof method is not compositional for parallel composition 

 it is not possible to do parallel composition of processes knowing only 

the pre- and postcondition of the local process.  

 If the specification is proved for the whole parallel program then it is 

possible to compose it sequentially to other programs looking only at pre- 

and postcondition  

 A Rely-Guarantee method exists which has a compositional parallel 

composition property also 

 



Exercise 

Prove that 

 

 

 

 

using PO:  

  

  



Exercise 
1. Annotate and prove the correctness of the following triple 

 

 

 


