
 Formal methods Lecture 12

Concurrency and Communication with Shared

Variables

Lecture is based on the book by

Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman,

Yassine Lakhnech, Mannes Poel, and Job Zwiers. Concurrency

Verification: Introduction to Compositional and Noncompositional

Methods

Non-deterministic programs

We use shortened notation:

if []n
i=1 bi Si fi []n

i=1 bi Si

do []n
i=1 bi Si od ([]n

i=1 bi Si)

Recall: proof system for

sequential programs

Axioms:

{p} skip {p}

{q[e/x]} x:=e {q}

Derived rules:

 p q

 {p} skip {q}

 p q[e/x]

 {p} x:=e {q}

Consequence rule:

Proof Outline

PO (Proof Outline) is Hoare triple (with annotated program) for which all the

verification conditions (VC) are provable using given program annotations.

Example of PO:

{ x = a }

x := x +1;

 { x = a +1}

skip

{ x +a= 2a +1}

Annotated commands:

If not assignment

Annotated commands

Parallel programming language

with shared variables

Command

commands

Execution model: atomicity and

interleaving

What is the value of x after the execution of the following program?

 (x := 0; x := x +2) || (x := 1; x := x +3)

Interleaving semantics: only one atomic action of one of the processes that is not

in the waiting state is executed at a time. It is called interleaving of atomic actions.

It can be either 2, 4, 5 or 6.

Proof system for parallel programs

All the rules and axioms of the sequential (non-deterministic) programs apply,

but we need new rules for new consturcts await and ||.

But the last rule about parallel composition is not valid. Consider:

 { x = 0} x := x +2 { x = 2} and { x = 0} y := x { y = 0} are POs,

 but { x = 0} x := x +2 || y := x { x = 2 /\ y = 0} is not valid

Interference freedom

 Annotation specifies the constraint what program variables have to satisfy

when the execution has reached the place/state where annotation is written.

 It is difficult to locate the place for annotations in the parallel program because

the global annotations should take into account all possible interleavings.

 It is not enough to prove the correcness of processes locally.

 Local annotations suffice only if we can prove that other processes do not

interfere with the validity of assertions in this process.

Definition: The POs {pi} ASi {qi} i =1, … , n are interference free iff for all

i,j {1, … , n }, i j, for every assertion r in {pj} ASj {qj} we have that if

Si is x := e or await b then S0 end occurs in {pi} ASi {qi} with precondition ri

then {ri /\ r} Si {r}.

Proof rules for shared-variable

parallel programs
Axioms:

{p} skip {p}

{q[e/x]} x:=e {q}

Consequence rule:

Example
Prove that { x = 0 } x := x + 1 || x := x + 2 { x = 3 }

{x = 0 x = 2}

{x = 0 x = 1}

{x = 1 x = 3}

{x = 2 x = 3}

{ x = 0 } x := x + 1 || x := x + 2 { x = 3 }

Add the annotations:

The global precondition implies the local preconditions of the processes and

the local postconditions imply the global postcondition:

˫ (x = 0) (x = 0 x = 2) (x = 0 x = 1)

˫ (x = 1 x = 3) (x = 2 x = 3) (x = 3)

Each processes are POs:

 ˫ {x = 0 x = 2} x := x + 1 {x = 1 x = 3}

 ˫ {x = 0 x = 1} x := x + 2 {x = 2 x = 3}

Example: interference test

{x = 0 x = 2}

{x = 0 x = 1}

{x = 1 x = 3}

{x = 2 x = 3}

{ x = 0 } x := x + 1 || x := x + 2 { x = 3 }

P1 does not interfere to P2 local precondition

 ˫ {(x = 0 x = 2) (x = 0 x = 1)} x := x + 1{ x = 0 x = 1}

P1 does not interfere to P2 local postcondition

 ˫ {(x = 0 x = 2) (x = 2 x = 3)} x := x + 1{ x = 2 x = 3}

P2 does not interfere to P1 local precondition

 ˫ {(x = 0 x = 1) (x = 0 x = 2)} x := x + 2{ x = 0 x = 2}

P2 does not interfere to P1 local postcondition

 ˫ {(x = 0 x = 1) (x = 1 x = 3)} x := x + 2{ x = 1 x = 3}

A problem

We cannot prove that

 { x = 0 } x := x + 1 || x := x + 1 { x = 2 }

because POs

 {(x = 0 x = 1)} x := x + 1{ x = 1 x = 2}

 {(x = 0 x = 1)} x := x + 1{ x = 1 x = 2}

are not interference free:

 {(x = 0 x = 1) (x = 0 x = 1)} x := x + 1{ x = 0 x = 1}

and the conjunction of local postconditions does no imply postcondition

 { x = 1 x = 2} { x = 1 x = 2} { x = 2 }

˫

˫

Conclusions

 Proving the properties of parallel programs is hard

 There is an exponential amount of verification conditions to check

 one VC for every command in all processes for every assignment

 The presented proof method is not compositional for parallel composition

 it is not possible to do parallel composition of processes knowing only

the pre- and postcondition of the local process.

 If the specification is proved for the whole parallel program then it is

possible to compose it sequentially to other programs looking only at pre-

and postcondition

 A Rely-Guarantee method exists which has a compositional parallel

composition property also

Exercise

Prove that

using PO:

Exercise
1. Annotate and prove the correctness of the following triple

