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Non-deterministic programs 

We use shortened notation: 

if   []n
i=1 bi  Si fi         []n

i=1 bi  Si  

do  []n
i=1 bi  Si od     ([]n

i=1 bi  Si) 



Recall: proof system for 

sequential programs 

Axioms: 

 

{p} skip {p} 

{q[e/x]}  x:=e {q} 

Derived rules:      

 

      p    q 

 {p} skip {q} 

 

  p  q[e/x] 

 {p} x:=e {q} 

Consequence rule: 

  



Proof Outline 

PO (Proof Outline) is Hoare triple (with annotated program) for which all the 

verification conditions (VC) are provable using given program annotations. 

  

Example of PO: 

{ x = a } 

x := x +1; 

   { x = a +1} 

skip 

{ x +a= 2a +1} 

Annotated commands: 

If not assignment 



Annotated commands 

 

 

 

 

 

 



Parallel programming language 

with shared variables 

Command 

commands 



Execution model: atomicity and 

interleaving 

What is the value of x after the execution of the following program? 

 (x := 0; x := x +2) || (x := 1; x := x +3)  

Interleaving semantics: only one atomic action of one of the processes that is not 

in the  waiting state is executed at a time. It is called interleaving of atomic actions. 

It can be either 2, 4, 5 or 6. 



Proof system for parallel programs 

All the rules and axioms of the sequential (non-deterministic) programs apply, 

but we need new rules for new consturcts await and ||. 

But the last rule about parallel composition is not valid. Consider: 

   

  { x = 0}  x := x +2 { x = 2}  and { x = 0}  y := x { y = 0} are POs, 

  but { x = 0}  x := x +2 || y := x { x = 2 /\ y = 0} is not valid 



Interference freedom 

 Annotation specifies the constraint what program variables have to satisfy 

when the execution  has reached the place/state where annotation is written. 

 It is difficult to locate the place for annotations in the parallel program because 

the global annotations should take into account all possible interleavings. 

 It is not enough to prove the correcness of processes locally.  

 Local annotations suffice only if we can prove that other processes do not 

interfere with the validity of assertions in this process. 
 

Definition: The POs {pi} ASi {qi} i =1, … , n  are interference free iff for all  

i,j  {1, … , n }, i  j, for every assertion r in {pj} ASj {qj} we have that if  

Si  is  x := e  or  await b then S0 end occurs in {pi} ASi {qi} with precondition ri 

then {ri  /\  r} Si {r}. 



Proof rules for shared-variable 

parallel programs 
Axioms: 

 

{p} skip {p} 

{q[e/x]}  x:=e {q} 

Consequence rule: 

  



Example 
Prove that { x = 0 }  x := x + 1   ||   x := x + 2   { x = 3 }  

{x = 0  x = 2} 

{x = 0  x = 1} 

{x = 1  x = 3} 

{x = 2  x = 3} 

{ x = 0 }  x := x + 1   ||   x := x + 2   { x = 3 } 

Add the annotations: 

The global precondition implies the local preconditions of the processes and  

the local postconditions imply the global postcondition: 

˫  (x = 0)   (x = 0  x = 2)  (x = 0  x = 1)  

˫  (x = 1  x = 3)  (x = 2  x = 3)  ( x = 3) 

Each processes are POs: 

  ˫ {x = 0  x = 2} x := x + 1 {x = 1  x = 3}   

  ˫ {x = 0  x = 1} x := x + 2 {x = 2  x = 3}  



Example: interference test 

{x = 0  x = 2} 

{x = 0  x = 1} 

{x = 1  x = 3} 

{x = 2  x = 3} 

{ x = 0 }  x := x + 1   ||   x := x + 2   { x = 3 } 

P1 does not interfere to P2 local precondition 

  ˫ {(x = 0  x = 2)  (x = 0  x = 1)} x := x + 1{ x = 0  x = 1} 

P1 does not interfere to P2 local postcondition 

  ˫ {(x = 0  x = 2)  (x = 2  x = 3)} x := x + 1{ x = 2  x = 3} 

P2 does not interfere to P1 local precondition 

  ˫ {(x = 0  x = 1)  (x = 0  x = 2)} x := x + 2{ x = 0  x = 2} 

P2 does not interfere to P1 local postcondition 

  ˫ {(x = 0  x = 1)  (x = 1  x = 3)} x := x + 2{ x = 1  x = 3} 

 



A problem 

We cannot prove that 

  { x = 0 }  x := x + 1   ||   x := x + 1   { x = 2 } 

because POs  

 {(x = 0  x = 1)} x := x + 1{ x = 1  x = 2} 

 {(x = 0  x = 1)} x := x + 1{ x = 1  x = 2} 

are not interference free: 

   {(x = 0  x = 1)  (x = 0  x = 1)} x := x + 1{ x = 0  x = 1} 

 

and the conjunction of local postconditions does no imply postcondition 

   { x = 1  x = 2}  { x = 1  x = 2}  { x = 2 } 

 

˫ 

˫ 



Conclusions 

 Proving the properties of parallel programs is hard 

 There is an exponential amount of verification conditions to check 

 one VC for every command in all processes for every assignment 

 The presented proof method is not compositional for parallel composition 

 it is not possible to do parallel composition of processes knowing only 

the pre- and postcondition of the local process.  

 If the specification is proved for the whole parallel program then it is 

possible to compose it sequentially to other programs looking only at pre- 

and postcondition  

 A Rely-Guarantee method exists which has a compositional parallel 

composition property also 

 



Exercise 

Prove that 

 

 

 

 

using PO:  

  

  



Exercise 
1. Annotate and prove the correctness of the following triple 

 

 

 


