Formal methods

Lecture 12
. . 000
Concurrency and Communication with Shared 0000
Variables 0000
[XX
Lecture is based on the book by : o

Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman,
Yassine Lakhnech, Mannes Poel, and Job Zwiers. Concurrency
Verification: Introduction to Compositional and Noncompositional
Methods

XY
I
T
3
Non-deterministic programs :

Value Expression e= u|lx|e+e | eg—e | e xe

Boolean Expression b:= e =ey | eg<ey | =b | by Vb

Statement Si:= sKkip | x:=e | S1:5 | G| »G

Guarded Command G := |[[|/_;bi — Sj]

e Guarded command [[|7_,b; — S;], also written as [b1 — Si]...[]bn — Shl,
terminates i1f none of the boolean guards b; evaluate to true. Otherwise, non-
deterministically select one of the b; that evaluates to true and execute the
corresponding statement S;.

e Iteration ~G indicates repeated execution of guarded command G as long
as at least one of the guards evaluates to true. When none of the guards
evaluate to true »G terminates.

We use shortened notation:
if [b —S; £i = ["_, b, =S,
do [I"z;b;— S;0d = *([]"._; b, = S))

Recall: proof system for
seguential programs

AXIioms:

{p} skip {p}
{qle/x]} x:=e {q}

Consequence rule:
P = po, {Po} S 190}, 40= ¢

i} Siq}

Derived rules:

pP=4q
{p} skip {qa}

p = qle/X]
{p} x:=e {q}

tpy Siiry, {r} S2 14t

{p} S1:5: {4}

{pAbi} Si{qit, forallie {1,. .., n}

{p} e bi = Si] {{(pA—bG) V iz g1}

(p/b6} G {p}

{p} *G{p/—-bg}

Proof Outline

PO (Proof Outline) is Hoare triple (with annotated program) for which all the
verification conditions (VC) are provable using given program annotations.

Example of PO:

{x=a}

X=X +1;
{x=a+l}
skip

{x +a=2a +1}

Annotated commands:

If not assignment

AS
AG =

skip | x :=e | await b then S end
[?:lbf' . {p? } ASj ‘{Qf [L]

AS;:{pVASy | AG | *{p) AG

Annotated commands

AS =
AG =

skip | x:=e | await b then Send | AS;:

[?:1"53'—} {pi}

44.53'

14i }

]

{p]

ASy | AG | *

p]

AG

o {p}skip {q} is a proof outline iff p — q.

o {p}tx:=e{q}isaproofoutlineiff p— qle/x|.

e {p} await b then S end {q} is a proof outline iff there exists a proof

outline

{p b} AS {q} with Progr(AS)=S.

o {ptAS1:{r} AS, {q} is a proofoutlineiff {p} ASy {r} and {r} AS; {q}
are proof outlines.

o {p} [I}2,0i — {pi} 4Si{qi}] {q} is a proof outline iff p N b; = p;
and p N—(\i_, b;) = q hold, {p;} AS; {q;} are proof outlines, for i =

& ok B @

o {p} {1} AG {q} is a proof outline iff p = 1, {INbyg} AG {I} is a

proof outline, and I N —b 4 = q.

000
i 000
Parallel programming language | se::
. . o0

with shared variables :

Expression ex= V| x]|ete |eg1—er | e1xe

Boolean Expression b= e =ey | ey <ey | =b | b1 Vb

Command S:= skip | x:=e [awaitbthenSeu{l] |

SIZSE | G | *(7
Guarded Command G = [[|'_,b; — ;]
Program [P:= S| |Sx]

e await 5 then S end is blocked in any state in which b evaluates to false.
If b evaluates to true then S can be executed atomically, 1.e., without being
interrupted by other components.

e Si||---||S, indicates parallel execution of the commands Si....,S,. The
components Sy.....S, of a parallel composition are often called processes.

e await » = await b then skip end

e < S >= await frue then S end

The brackets < --- > are sometimes called “Lamport brackets” and < § > 1s
also called a “bracketed section™ or “atomic region’.

Execution model: atomicity and | s2::

Interleaving :

e An assignment x := e 1s executed aromically, that 1s, during its execution
other parallel processes may not change x or the variables occurring 1n e.

e For an await statement await 5 then S end we assume that S 1s executed
atomically in a state where 4 holds.

e Concurrent processes proceed asynchronously. No assumptions are made
about the relative speed at which processes execute their actions.

Interleaving semantics: only one atomic action of one of the processes that is not
in the waiting state is executed at a time. It is called interleaving of atomic actions.

What is the value of x after the execution of the following program?
(X:=0;x:=x+2) || (x:=1; x:=x+3)

It can be either 2, 4, 5 or 6.

Proof system for parallel programsj ¢

All the rules and axioms of the sequential (non-deterministic) programs apply,
but we need new rules for new consturcts await and ||.

{pAb}S{q}

{p} await b then S end {¢}

1ereessstproof outlines {p; }4Si{q;}.i=1,....n.
\
{p1/N...Apn}t Progr(ASy) || ... || ProgrTaSir<gsde. . \qn}

E—

But the last rule about parallel composition is not valid. Consider:

{x=0} x:=x+2{x=2} and {x =0} y:=x{y=0}are POs,
but{x=0} x:=x+2||y:=x{x=2/\y=0}is not valid

Interference freedom

e Annotation specifies the constraint what program variables have to satisfy
when the execution has reached the place/state where annotation is written.

e It is difficult to locate the place for annotations in the parallel program because
the global annotations should take into account all possible interleavings.

e Itis not enough to prove the correcness of processes locally.

e Local annotations suffice only if we can prove that other processes do not
interfere with the validity of assertions in this process.

Definition: The POs {p:} AS; {q;} i =1, ..., n are interference free iff for all
1) € {1,...,n} 1], for every assertion r in {p;} AS; {q;} we have that if

S, Is x:=e or await b then S, end occurs in {p;} AS; {q;} with precondition r,
then {r; \ r}S; {r}.

There exist proof outlines {p;i lASilq:il, i=1..... n, that are interference free
proo I iy,)

{p1 /... \Npn} Progr(4Sy) || ... || Progr(4S,) {q1 /... \qn}

Proof rules for shared-variable

parallel programs

AXIioms;:

{p} skip {p}
{qle/x]} x:=e {q}

o} Siir), {r) S2 {4}

Consequence rule:

P =po, {po} S{q90}, q0 = ¢

{p} S1:5: {4}

{pAbi}t Si{qit, forallie {1,..., n}

i} Siq}

{pAb}S{q}

(P, bi = Si] {(pA—bG) V Vit ¢i}

(p/ b6} G {p}

{p} await b then S end {¢}

{p} *G{p/ —-bg}

There exist proof outlines {pi}ASi{qi}, i=1,.... n, that are interference free

{p1 /... \Npn} Progr(4Sy) || ... || Progr(4S,) {q1 /... \qn}

Example

Provethat {x=0} x:=x+1 || x:=x+2 {x=3}

Add the annotations:

{x=0vx=2}

{x=1vx=3}

{x:0}4:2x+1 w,x::x+2\{x:3}

{x=0vx=1}

{x=2vx=3}

The global precondition implies the local preconditions of the processes and
the local postconditions imply the global postcondition:
F(X=0)= X=0vx=2)A(x=0vx=1)
F(X=1vx=3)AX=2vx=3)=(x=3)

Each processes are POs:

F{X=0vx=2}x=x+1{x=1vx=3}
F{X=0vx=1}x=x+2{x=2vx=3}

Example: interference test

{x=0vx=2}

{x=1vx=3}

{x=0} x=x+1 ||/x::x+2,\{x:3}

{x=0vx=1}

{x=2vx=3}

P1 does not interfere to P2 local precondition

F{(X=0vXx=2D)AX=0vx=1}x=x+1{x=0vx=1}

P1 does not interfere to P2 local postcondition

F{X=0vX=2)AX=2vXx=3)}x=x+1{x=2vx=3}

P2 does not interfere to P1 local precondition

F{X=0vX=1)AX=0vXx=2)}x=x+2{x=0vx=2}

P2 does not interfere to P1 local postcondition

F{X=0vXx=1)AX=1vXx=3)x=x+2{x=1vx=3}

A problem

We cannot prove that
{x=0} x=x+1 || x:=x+1 {x=2}
because POs
{x=0vx=1D}x=x+1{x=1vx=2}
{x=0vx=1D}x=x+1{x=1vx=2}
are not interference free:
N {xX=0vx=D)AX=0vx=D}x=x+1{x=0vx=1}

and the conjunction of local postconditions does no imply postcondition
N Ix=1vx=2}Aa{x=1vx=2}={x=2}

Conclusions

e Proving the properties of parallel programs is hard
e There is an exponential amount of verification conditions to check
e one VC for every command in all processes for every assignment
e The presented proof method is not compositional for parallel composition

e itis not possible to do parallel composition of processes knowing only
the pre- and postcondition of the local process.

e If the specification is proved for the whole parallel program then it is
possible to compose it sequentially to other programs looking only at pre-
and postcondition

e A Rely-Guarantee method exists which has a compositional parallel
composition property also

Exercise :

Prove that

{=doney N —~done; Nx =0}
<x:=x+ lidoney :=true > || < x :=x+ l.donez .= true >
{x=2}.
using PO:
{=doney N (—done; = x = 0) A (done; =>x=1)}
<x:=x+ l:done; ;= true >
ldoney N (—done; = x = 1) N (done; = x =2}

Exercise :

1. Annotate and prove the correctness of the following triple

(x>0} y=lLx[yxy<x—y=p+1)y=y—1 " <x < (v+1)*)

