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K nearest neighbour (KNN) classification

I Suppose we have a set of N points belonging to C different classes.

I For each class we have Nc points such that∑
c

Nc = N

I Suppose we want to classify a new point x.

I From the training set we find K nearest points to the point x.

I We know the correct labels of these points.

I We assign x the majority label of the neighbouring points.
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KNN classification with K = 3

Figure 1.14(a) from Machine Learning: A Probabilistic Approach (Murphy).
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Formally

I When we have training data D and some fixed K then the value of
the label y of a new point x has the probability:

p(y = c |x,D,K ) =
1

K

∑
i∈NK (x,D)

1{yi = c}

I NK (x,D) are the indices of the K nearest points to x in D.
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KNN classifier

I KNN is a supervised method.
I It is a nonparametric learning method.

I In nonparametric models the number of parameters is not fixed but
rather grows with the amount of data.

I KNN is also called a memory-based learner because essentially the
algorithm just memorizes the training data.

I K is hyperparameter in this model.
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KNN example
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Figure 1.15(a) and (d) from Machine Learning: A Probabilistic Approach (Murphy).
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Decision boundary

I The lines separating different colors on last slide are called decision
boundaries.

I They show for this specific model into which class the test examples
will be classified.

I Decision boundaries characterize the complexity of the model:
I When the decision boundary is too complex we might be overfitting.
I When the decision boundary is too smooth there might be underfitting.

I With KNN we can use K to control the complexity of the decision
boundary.

I Cross-validation can be used to select the best value for K .
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What means nearest?

I The distance between two points must be assessed according to some
distance measure.

I There are many ways for computing the distance between two points.
I Euclidean distance (2-norm)
I Cosine distance
I Hamming distance
I Levenshtein distance
I Manhattan distance (1-norm)
I Chebyshev distance (∞-norm)
I Mahalanobis distance

I Most distances are metrics but this must not always be true.
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Distance metric

A distance measure d is a metric if the following conditions are satisfied:

1. non-negativity: d(x , y) ≥ 0

2. identity: d(x , y) = 0 if and only if x = y

3. symmetry: d(x , y) = d(y , x)

4. triangle inequality: d(x , z) ≤ d(x , y) + d(y , z)
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Distances in Euclidean space

Euclidean distance (2-norm)

d(x, y) =

√√√√ n∑
i=1

(xi − yi )2

Manhattan distance (1-norm)

d(x, y) =
n∑

i=1

|xi − yi |

Chebyshev distance (∞-norm)

d(x, y) = lim
k→∞

(
n∑

i=1

|xi − yi |k
)1/k

= max
i

(|xi − yi |)
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Cosine similarity and distance

I Cosine similarity measures the angle between vectors.

I Most commonly used in high-dimensional positive spaces.

simC (x, y) =
x · y
‖x‖‖y‖

I It ranges from values -1 (exactly opposite) to 1 (exactly same).

I Cosine distance is obtained from cosine similarity:

dC (x, y) = 1− simC (x, y)
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Levenshtein distance

I Also called string edit distance (SED).

I Used to measure the distance between two strings.

I SED is minimum number of single-character edits required to change
one string into another.

I Edit operations include:
I insertions
I deletions
I substitutions

I Can be implemented using dynamic programming.
I SED(kitten, sitting) = 3: k i t t e n → s i t t i n g

I substitute k with s
I substitute e with i
I insert g
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Hamming distance

I Like Levenshtein distance with substitution operation only.

I Frequently used with binary data.

1 1 0 1 1
1 0 0 1 0
0 + 1 + 0 + 0 + 1 = 2

I Can also be used with categorical data.

red tall 5
red short 5
0 + 1 + 0 = 1
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Data normalization

I Distance depends on the scale of the features.

I Changing the scale of one feature (for example from cm to mm) while
keeping other the same the distances and nearest neighbours will be
different.

I A common way to avoid it is to normalize the data:
I Compute mean muj and standard deviation σj in each of the j

dimensions.
I Rescale all elements such that:

xij =
xij − µj

σj
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Mahalanobis distance

I Mahalanobis distance takes into account the covariance between
dimensions.

d(x, y) =
√

(x− y)TΣ−1(x− y)

I Σ is the covariance matrix of features.

I This formula appears in the exponent of the Gaussian distribution.

I When covariance is idendity matrix then Mahalanobis distance
reduces to Euclidean distance.

I With diagonal covariance matrix the resulting measure is normalized
Euclidean distance.

d(x, y) =

√√√√ m∑
j=1

(xj − yj)2

σ2j
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Curse of dimensionality

I KNN-s can work well with good distance metric and enough labelled
training data.

I But they do not perform well in high dimensional settings due to
curse of dimensionality.

I Suppose data is distributed uniformly in d-dimensional unit cube.

I We choose a point x and form a cube around including some fraction
f of all points.

I What is the expected edge length of this cube?

Ed [s(f )] = f 1/d

Kairit Sirts () K nearest neighbours 14.02.2014 16 / 17



Curse of dimensionality

I Let’s fix f = 0.01

d s
1 0.01
2 0.10
3 0.22
4 0.32
5 0.40
6 0.46
7 0.52
8 0.56
9 0.60

10 0.63
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Figure 1.16(b) from Machine Learning: A Probabilistic Approach (Murphy).

I Considering that our cube has edge length only one the ”nearest
neighbours” for high dimensional data are actually not very near.
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