Lecture 3 Property specification in Temporal Logic CTL*

J.Vain 18.02.2015

Model Checking

$$M \mid = P$$
?

Given

- ▶ M model
- ▶ P − property to be checked

Check if M satisfies P

Model: Kripke Structure (revisited I)

- KS is a state-transition system that captures
 - what is true in a state
 - what can be viewed as an atomic move
 - the succession of states
- KS is a static representation that can be unrolled to a tree of execution traces, on which temporal properties are verified.

Representing transition

- In Kripke structure, $(s, s') \in R$ corresponds to one step of execution of the program.
- Suppose a program has two steps

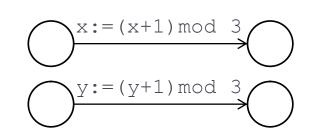
```
x := (x+1) \mod 3;
```

$$y := (y+1) \mod 3.$$

Then $R = \{R_1, R_2\}$

$$R_1: (x' = (x+1) \mod 3) \land (y' = y)$$

$$R_2: (y' = (y+1) \mod 3) \land (x' = x)$$

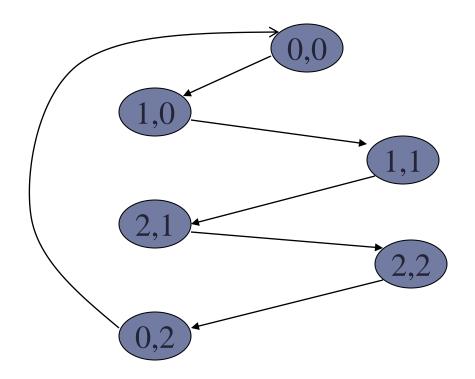


Consecutive States

State space: we can restrict our attention to $\{0, 1, 2\} \times \{0, 1, 2\}$

- Question: which logic formula describes the relation between <u>any</u> two consecutive states?
- ▶ Consecutive states can be related by R_1 or R_2 .

Consecutive states represented by $R_1 \vee R_2$



Representing transition (revisited II)

- ▶ In Kripke structure, a transition $(s, s') \in R$ corresponds to one step of execution of the program
- Suppose a program P has two steps

```
x := (x+1) \mod 3;
y := (y+1) \mod 3;
```

- For the whole program we have $R=((\dot{x}=x+1 \mod 3) \land \dot{y}=\dot{y}) \lor ((\dot{y}=y+1 \mod 3) \land \dot{x}=x)$
- ▶ (s, s') that satisfies R means "from s we can get to s' by any step of execution of P"

A giant R

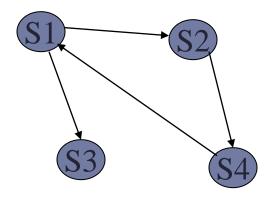
- ▶ We can compute R for the whole program
 - then we will know whether two states are one-step reachable
- Convenient, but globally we loose information:
 e.g., the order in which the statements are executed
- Comment:
 - without order, the disjuncts have <u>no precedence!</u>

Introducing program counter

- In a real machine, the order of execution is managed by a *program counters*
- We introduce a virtual variable pc, and assume the program is everywhere labeled:
 - In the program: $l_0: x := x+1; l_1: y := x+1; l_2: ...$
 - In the logic: R_1 : $\dot{x} = x+1 \land \dot{y} = y \land pc = l_0 \land pc' = l_1$
 - ! Now we have complete logic representation of program executions in our model *M*!

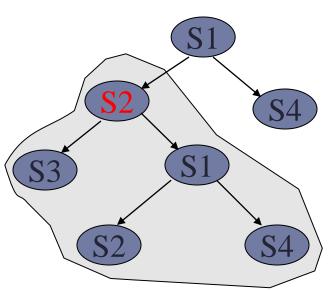
Temporal logic CTL*

SemanticsKS is static model of program execution

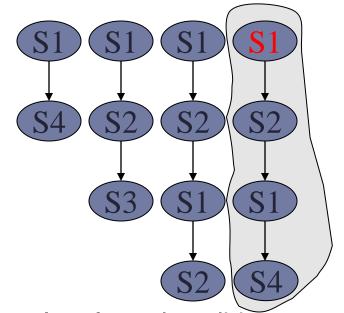


Dynamic model of program execution = unfolding of the static model

Tree structure: branching time Traces: linear time



Is a formula valid at a given node, which represents a subtree?



Is a formula valid along a given path?

CTL* (Computational Tree Logic)

- Combines branching time and linear time
- Basic Operators
 - X: neXt
 - ▶ F: Future (⟨⟩)
 - ► G: Global ([])
 - ▶ U: Until
 - R: Release

CTL*

- State formulas
 - Express a propery of a state
 - Path quantifiers:
 - ▶ A for all paths, E for some paths
- Path formulas
 - Expess a property of a path
 - State quantifiers:
 - ▶ G for all states (of the path)
 - ▶ F for some state (of the path)

State Formulas (1)

- Atomic properties
 - $p \in AP$, then p is a state formula
 - Examples: x > 0, odd(y)
- Propositional combinations of state formulas
 - $\triangleright \neg \varphi, \varphi \lor \psi, \varphi \land \psi \dots$
 - ▶ Examples: $x > 0 \lor odd(y)$, $req \Rightarrow (AF ack)$
 - □ "A" is path quantifier
 - □ "F ack" is a path formula
 - □ "AF ack" is a state formula

State Formulas (2)

- Quantifiers A and E construct a state formula from a path formula
- \blacktriangleright E ϕ , where ϕ is a path formula, which expresses property of a path
 - E means "there exists"
 - \blacktriangleright E φ on some path from this state on φ is true.
- Dual: A φ
 - ϕ is true on all paths starting from this state.

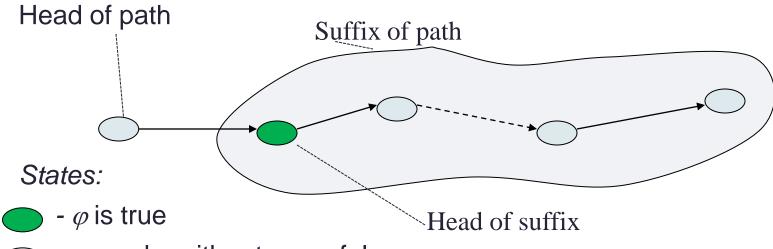
Forms of Path Formulas

- A state formula φ
 - ϕ is true for the <u>first state</u> of this path
- For path formulas φ and ψ , the path formulas are:
 - $\rightarrow \varphi, \quad \varphi \lor \psi, \quad \varphi \land \psi$
 - \triangleright X φ , F φ , G φ , φ U ψ , φ R ψ

Path Formulas (I): *Next*-operator

$X \varphi$, where φ is a path formula

• φ is valid for the suffix of this path (path minus the first state)

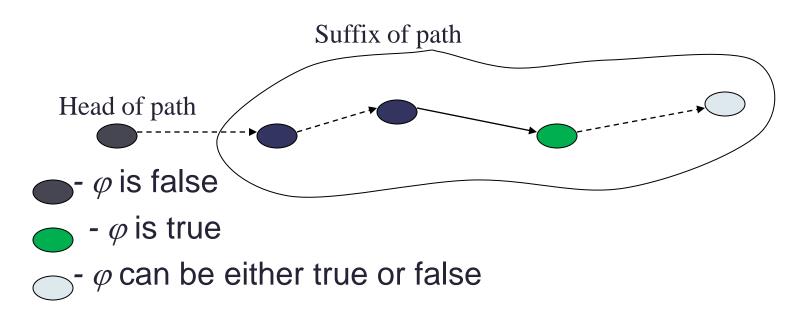


 \bigcirc - φ can be either true or false

Path Formulas II: Finally-operator

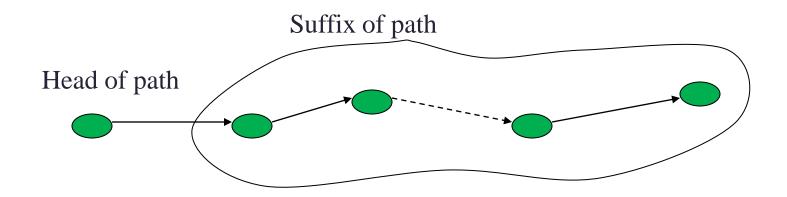
 $\mathsf{F} \varphi$

 φ is valid for a suffix of this path (path minus first k nodes for some $k \ge 0$)



Path Formulas (III): Globally-operator

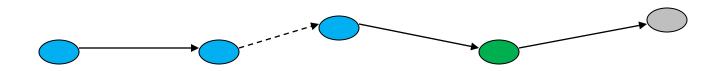
- G φ
 - ho is valid for head and every suffix of this path



 $-\varphi$ is true

Path Formulas IV: *Until*-operator

- φ U ψ
 - ψ is valid on a suffix of the path, before the first node of which φ is valid on every suffix thereon

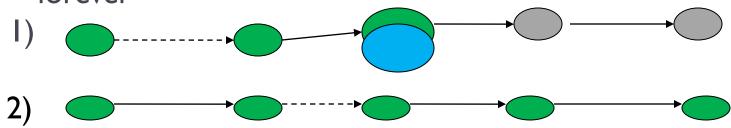


- $-\varphi$ is true
- $-\psi$ is true
- \bigcirc - φ and ψ are either true or false

Path Formulas (V): Release-operator

$\varphi R \psi$

• ψ has to be true until and including the point where ϕ becomes true; if never becomes true, must remain true forever



 φ never gets true

- $-\varphi$ is true
- $-\psi$ is true
- \bigcirc - ψ can be either true or false

Formal semantics of CTL* (1)

Notations

- M, s |= φ iff φ holds in state s of model M
 M, π |= φ iff φ holds along the path π in M
- $\rightarrow \pi^i$: *i*-th suffix of π
 - $\pi = s_0, s_1, ..., \text{ then } \pi^1 = s_1, ...$

Semantics of CTL* (2)

- Path formulas are interpreted over a path:
 - M, $\pi \models \varphi$
 - M, $\pi \mid = X \varphi$
 - M, $\pi \models F \varphi$
 - M, $\pi \models \varphi \cup \psi$

Semantics of CTL* (3)

- State formulas are interpreted over a set of states (of a path)
 - M, s = p
 - M, $S = \neg \varphi$
 - M, $s = E \varphi$
 - M, $s = A \varphi$

CTL vs. CTL*

- ▶ CTL*, CTL and LTL have different expressive powers:
- Example:
 - In CTL there is no formula being equivalent to LTL formula A(FG p).
 - In LTL there is no formula equivalent to CTL formula AG(EF p).
 - ▶ $A(FG p) \lor AG(EF p)$ is a CTL* formula that cannot be expressed neither in CTL nor in LTL.

CTL

- Quantifiers over paths
 - \land **A A**II: has to hold on all paths starting from the current state.
 - $\mathbf{E} \mathbf{E}$ xists: there exists at least one path starting from the current state where holds.
- In CTL, path formulas can occur only when paired with an A or E, i.e. one path operator followed by a state operator.

if φ and ψ are path formulas, then

- X φ,
- F φ,
- G φ,
- $\rightarrow \varphi \cup \psi$,
- $\rho R \psi$

are path formulas

LTL (contains only path formulas)

Form of path formulas:

- If $p \in AP$, then p is a path formula
- If φ and ψ are path formulas, then
 - $\vdash \neg \varphi$
 - $\rho \vee \psi$
 - $\triangleright \varphi \land \psi$
 - **Χ** φ
 - F φ
 - \triangleright G φ
 - $\rho \cup \psi$
 - $\rho R \psi$

are path formulas.

Minimal set of CTL temporal operators

- ▶ Transformations used for temporal operators :
 - **EF** $\varphi == \mathbf{E}[\text{true } \mathbf{U}(\varphi)]$ (because **F** $\varphi == [\text{true } \mathbf{U}(\varphi)]$)
 - \rightarrow AX $\varphi == \neg$ EX($\neg \varphi$)
 - ▶ AG $\varphi == \neg$ EF($\neg \varphi$) == \neg E[true U(φ)]
 - ▶ AF $\varphi ==$ A[true U φ] == \neg EG($\neg \varphi$)

Summary

- CTL* is a general temporal logic that offers strong expressive power, more than CTL and LTL separately.
- CTL and LTL are practically useful enough; CTL* helps us to understand the relations between LTL and CTL.
- Next we will show how to model check CTL formuli on Kripke structures