
Search 2

Tanel Tammet, Juhan Ernits
Institute of Computer Science

Tallinn University of Technology
tanel.tammet@ttu.ee juhan.ernits@ttu.ee

2016

Outline
 Informed (Heuristic) search strategies

 (Greedy) Best-first search
 A* search

 (Admissible) Heuristic Functions
 Relaxed problem
 Subproblem

 Local search algorithms
 Hill-climbing search
 Simulated anneal search
 Local beam search
 Genetic algorithms

 Online search *
 Online local search
 learning in online search

Informed search strategies
 Informed search

 uses problem-specific knowledge beyond the problem
definition

 finds solution more efficiently than the uninformed search

 Best-first search
 uses an evaluation function f(n) for each node

 e.g., Measures distance to the goal – lowest evaluation
 Implementation:

 Fringe is a queue sorted in increasing order of f-values.
 Can we really expand the best node first?

 No! only the one that appears to be best based on f(n).
 heuristic function h(n)

 estimated cost of the cheapest path from node n to a goal node
 Specific algorithms

 greedy best-first search
 A* search

Greedy best-first search
 expand the node that is closest to the goal
 : Straight line distance heuristic)()(nhnf SLD=

Greedy best-first search example

Properties of Greedy best-first search

 Complete?

 Optimal?

 Time?

 Space?

No

No – can get stuck in loops, e.g., Iasi –> Neamt –> Iasi –> Neamt

Yes – complete in finite states with repeated-state checking

)(mbO , but a good heuristic function can give dramatic improvement

)(mbO – keeps all nodes in memory

A* search
 evaluation function f(n) = g(n) + h(n)

 g(n) = cost to reach the node
 h(n) = estimated cost to the goal from n
 f(n) = estimated total cost of path through n to the goal

 an admissible (optimistic) heuristic
 never overestimates the cost to reach the goal
 estimates the cost of solving the problem is less than it actually is
 e.g., never overestimates the actual road distances

 A* using Tree-Search is optimal if h(n) is admissible
 could get suboptimal solutions using Graph-Search

 might discard the optimal path to a repeated state if it is not the first
one generated

 a simple solution is to discard the more expensive of any two paths
found to the same node (extra memory)

)(nhSLD

: Straight line distance heuristic)(nhSLD

A* search example

Optimality of A*
)(),,()(nhnancnh ′+′≤ Consistency (monotonicity)

 n’ is any successor of n, general triangle inequality (n, n’, and the goal)
 consistent heuristic is also admissible

 A* using Graph-Search is optimal if h(n) is consistent
 the values of f(n) along any path are nondecreasing

)()()(nhngnf ′+′=′

)(),,()(nhnancng ′+′+=

)()()(nfnhng =+≥

Properties of A*
 Suppose C* is the cost of the optimal solution path

 A* expands all nodes with f(n) < C*
 A* might expand some of nodes with f(n) = C* on the “goal contour”
 A* will expand no nodes with f(n) > C*, which are pruned!
 Pruning: eliminating possibilities from consideration without examination

 A* is optimally efficient for any given heuristic function
 no other optimal algorithm is guaranteed to expand fewer nodes than A*
 an algorithm might miss the optimal solution if it does not expand all nodes

with f(n) < C*

 A* is complete

 Time complexity
 exponential number of nodes within the goal contour

 Space complexity
 keeps all generated nodes in memory
 runs out of space long before runs out of time

Memory-bounded heuristic search
 Iterative-deepening A* (IDA*)

 uses f-value (g + h) as the cutoff

 Recursive best-first search (RBFS)
 replaces the f-value of each node along the path with the best f-value of its

children
 remembers the f-value of the best leaf in the “forgotten” subtree so that it

can reexpand it later if necessary
 is efficient than IDA* but generates excessive nodes
 changes mind: go back to pick up the second-best path due to the extension

(f-value increased) of current best path
 optimal if h(n) is admissible
 space complexity is O(bd)
 time complexity depends on the accuracy of h(n) and how often the current

best path is changed

 Exponential time complexity of Both IDA* and RBFS
 cannot check repeated states other than those on the current path when

search on Graphs – Should have used more memory (to store the nodes
visited)!

: Straight line distance heuristic)(nhSLD

RBFS example

Memory-bounded heuristic search (cont’d)

 SMA* – Simplified MA* (Memory-bounded A*)
 expands the best leaf node until memory is full
 then drops the worst leaf node – the one has the highest f-value
 regenerates the subtree only when all other paths have been shown to look

worse than the path it has forgotten
 complete and optimal if there is a solution reachable
 might be the best general-purpose algorithm for finding optimal solutions

 If there is no way to balance the trade off between time an memory,
drop the optimality requirement!

(Admissible) Heuristic Functions

h1?

h2?

)(1 nh = the number of misplaced tiles

)(2 nh = total Manhattan (city block) distance

= 7 tiles are out of position

= 4+0+3+3+1+0+2+1 = 14

Effect of heuristic accuracy
 Effective branching factor b*

 total # of nodes generated by A* is N, the solution depth is d
 b* is b that a uniform tree of depth d containing N+1 nodes would have

 well-designed heuristic would have a value close to 1
 h2 is better than h1 based on the b*

 Domination
 h2 dominates h1 if for any node n
 A* using h2 will never expand more nodes than A* using h1

every node n with will be expanded

 the larger the better, as long as it does not overestimate!

() ()dbbbN *2** ...11 ++++=+

)()(12 nhnh ≥

*)(Cnf <
*)()()(Cnhngnf <+= ⇒)()(* ngCnh −<

⇒)()()(*
21 ngCnhnh −<≤

Inventing admissible heuristic functions
 h1 and h2 are solutions to relaxed (simplified) version of the puzzle.

 If the rules of the 8-puzzle are relaxed so that a tile can move anywhere,
then h1 gives the shortest solution

 If the rules are relaxed so that a tile can move to any adjacent square, then
h2 gives the shortest solution

 Relaxed problem: A problem with fewer restrictions on the actions
 Admissible heuristics for the original problem can be derived from the

optimal (exact) solution to a relaxed problem
 Key point: the optimal solution cost of a relaxed problem is no greater than

the optimal solution cost of the original problem
 Which should we choose if none of the h1 … hm dominates any of the others?

We can have the best of all worlds, i.e., use whichever function is most
accurate on the current node

 Subproblem *
 Admissible heuristics for the original problem can also be derived from the

solution cost of the subproblem.
 Learning from experience *

{ })(),...,(max)(1 nhnhnh m=

Example of subproblems in 8-puzzle

• Acknowledgements

• This set of slides contains several prepared by
Hwee Tou Ng and Stuart Russell, available
from the AIMA pages.

http://aima.cs.berkeley.edu/instructors.html

	Search 2�
	Outline
	Informed search strategies
	Greedy best-first search
	Greedy best-first search example
	Slide Number 6
	A* search
	Slide Number 8
	A* search example
	Optimality of A*
	Slide Number 11
	Slide Number 12
	Slide Number 13
	RBFS example
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20

