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Multiclass classification

We have already seen artificial neural networks, but there are many more
methods:

I One versus all

I All versus all

I Classification tree

I Näıve Bayes

I Maximum entropy model (multiclass logistic regression)
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One versus all (OVA) multiclass classification

I Assume we have K classes and a binary classifier (eg logistic
regression)

I Train K binary classifiers, such that for each classifier:
I Data labelled with Ck is treated as positive examples
I Data with all other labels is treated as negative examples

I For predicting the class of a new example:
I Predict the label with each classifier.
I Add the result (+1 or -1) to the score vector respective component.
I Final prediction is the class with largest score with ties broken

randomly.
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All versus all (AVA) multiclass classification

I Assume we have K classes and a binary classifier (eg logistic
regression)

I Train K(K − 1)/2 binary classifiers, such that for each i-th and j-th
class pair:

I Treat the data with ith class label as positive examples
I Treat the data with jth class label as negative examples

I For predicting the class of a new example:
I Predict the label with each classifier.
I For positive prediction the ith class gets a point, for negative prediction

the point goes to the jth class
I Final prediction is the class with the largest score.
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Classification tree

I Build binary tree of binary classifiers

I With K classes K − 1 classifiers are necessary

I At the root, half of the classes are considered positive and the other
half negative

I Need to know the data for deciding how to organize the classes in the
tree.
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Bayes theorem

I Let’s assume we have k classes.

I The posterior probability of a class Ck for an input x is:

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
,

I where p(x|Ck) is the likelihood, p(Ck) is the prior probability and
p(x) is the marginal data likelihood.

I p(Ck) is the probability of a class Ck a priori, before seeing any data.

I p(Ck|x) is the class probability a posteriori, after observing the data.

I Bayes theorem updates the prior distribution into posterior using the
evidence - observed data.

Kairit Sirts () Multiclass classification 04.04.2014 6 / 24



Independence of variables

I If X and Y are unconditionally independent then their joint
distribution is the product of marginal distributions:

X⊥Y ⇐⇒ p(X,Y ) = p(X)p(Y )

I Unconditional independence is rare, mostly variables influence each
other.

I If this influence is mediated through a third variable Z, then X and Y
are conditionally independent.

X⊥Y |Z ⇐⇒ p(X,Y |Z) = p(X|Z)p(Y |Z)

I Conditional independence does not imply unconditional independence
and vice versa:

X⊥Y |Z 6⇐⇒ X⊥Y
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Spam detection

I Inputs x are emails (documents).

I We have m labeled training pairs (xi, yi), yi ∈ {0, 1}
I Want to classify a new email as spam 1 or not spam 0

I According to Bayes rule:

p(y|x) = p(x|y)p(y)
p(x)

∝ p(x|y)p(y)

I We can omit the denominator p(x, because this does not involve y.

I In general, the denominator can be computed as:

p(x) =
∑
y′

p(x|y′)p(y′)

Kairit Sirts () Multiclass classification 04.04.2014 8 / 24



Feature representation

I Computing likelihood p(x|y) is hard, because we will never have
enough training data to estimate this distribution reliably.

I Instead represent the document as a “bag-of-words”:
I Choose vocabulary V
I Present each input as |V |-dimensional vector, where each position

corresponds to a word in vocabulary
I In each position the value is 1, if the corresponding word appears in the

input and 0 otherwise.

I Now the likelihood can be computed as:

p(x|y) =
|V |∏
j=1

p(xj |y)
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Näıve Bayes assumption

I We have:

p(x|y) =
n∏

j=1

p(xj |y)

I We essentially assume that the features (words) are conditionally
independent given the class label

I This is called näıve Bayes assumption

I The model is called ”naive”, because we do not expect features
actually to be independent nor conditionally independent.

I Still this model usually performs quite well, because it has relatively
few parameters (O(Kn)) and is thus relatively immune to overfitting.

I Feature representation is lossy, original document cannot be
constructed from it.
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Näıve Bayes model

I The model has the following parameters:

θj|y=1 = p(x1 = 1|y = 1)

θj|y=0 = p(x1 = 1|y = 0)

θy = p(y = 1)

I The MLE estimates for the parameters are:

θj|y=1 =

∑m
i=1 I(xij = 1, yi = 1)∑m

i=1 I(yi = 1)

θj|y=0 =

∑m
i=1 I(xij = 1, yi = 0)∑m

i=1 I(yi = 0)

θy =

∑m
i=1 I(yi = 1)

m
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Prediction with näıve Bayes

I We want to find wether a new email x is spam or not spam.

I We use Bayes theorem

p(y = 1|x,θ) ∝ p(x|y,θ)p(y|θ) = p(y = 1|θ)
n∏

j=1

p(xij |y = 1,θ)

p(y = 0|x,θ) ∝ p(x|y,θ)p(y|θ) = p(y = 0|θ)
n∏

j=1

p(xij |y = 0,θ)

I We predict the class with highest posterior probability:

y∗ = arg max
y∈{0,1}

p(y|x,θ)
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Different types of features

I For real-valused features we can fit a Gaussian:

p(x|y = k) =

n∏
j=1

N (xj |µkj , σ2kj)

I For features with categorical values we can use multinomial
distribution:

p(x|y = k) =

n∏
j=1

Multi(xj |θkj)

I Continuous values can also be discretized and modeled as multinomial
random variables
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Problem with MLE estimates

I What if the test email contains a word with index w that is in
vocabulary but was never observed in the training set?

I The parameters involving this word are:

p(xw|y = 1) =

∑m
i=1 I(xiw = 1, yi = 1)∑m

i=1 I(yi = 1)
= 0

p(xw|y = 0) =

∑m
i=1 I(xiw = 1, yi = 0)∑m

i=1 I(yi = 0)
= 0

I Thus, posterior probabilities for predicting class are 0, because these
formulas always have p(xw|y = 1) or p(xw|y = 0) in the product.
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Smoothing

I Generally, it is bad idea to estimate any probability to 0 just because
we havent’ seen some data in the training set.

I This problem can be overcome with smoothing

I The general idea of smoothing is to take away some probability mass
from the observed values and to preserve it to the unobserved values.
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Add-one smoothing

I Add-one smoothing is one of the simplest techniques

I We add one for every parameter in the numerator and number of
classes k in the denominator

θj|y=1 =

∑m
i=1 I(xij = 1, yi = 1) + 1∑m

i=1 I(yi = 1) + 2

θj|y=0 =

∑m
i=1 I(xij = 1, yi = 0) + 1∑m

i=1 I(yi = 0) + 2

I You can check that the probabilities still sum to one.

I Add-one smoothing can be generalized so that instead of 1 we add a
value of a parameter α
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Maximum entropy model

I Essentially multiclass logistic regression

I Also known ad log-linear model

I Allows overlapping features

I Widely used in practical machine learning
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Definitions

I Goal is to learn a model for multiclass classification. We have:
I set of possible inputs X
I finite set of possible classes Y
I number of features in the model d
I a function f : (X,Y )→ Rd that maps any (x, y) pair to a feature

vector f(x, y)
I a parameter vector θ ∈ Rd

I The probability of y conditioned on x, given the model parameters θ
is defined as:

p(y|x;θ) = exp (θT f(x, y))∑
y′∈Y exp (θT f(x, y′))
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Features

I For any pair (x, y), f(x, y) ∈ Rd is a feature vector for this pair

I Each component fk(x, y) in this vector is a feature

I Features allow us to represent different properties on input x in
conjuction with y

I Often binary features are used, that is fk(x, y) ∈ {0, 1}
I Consider text classification example. One feature function could be:

f(x, y) =

{
1, if x contains “football” and y is “sport”

0, otherwise

I Typically, features are generated from feature templates. E.g. in text
classification we would generate such features for all words and
classes that occur in the training data.
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More complex features
I Consider the problem of classifying person names according to

language
I Training data is in pairs: (Jüri, EST), (James, ENG), (Veronique,

FRA).
I What features could we use:

I Name features:

f(x, y) = 1 if x = “Veronique” and y = “FRA”

I Suffix features, e.g.

f(x, y) = 1 if x ends with “que” and y = “FRA”

I Prefix features:

f(x, y) = 1 if x starts with “Jü” and y = “EST”

I Character features:

f(x, y) = 1 if x contains “ü” and y = “EST”
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Some motivation for the model formula

p(y|x;θ) = exp (θT f(x, y))∑
y′∈Y exp (θT f(x, y′))

I The exponent θT f(x, y) can have any value depending on the active
features and model parameters

I It can be interpreted as a measure of plausibility of a class y given
input x

I This measure can be computed for all classes y for any input x

I we would like to transform those measures to a well-formed
distribution p(y|x)

I This can be done by first exponentiating which guarantees that the
result is always larger than zero

I Finally we normalize to ensure the probabilities sum to 1.
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Estimating parameters

I The log-likelihood of the training data is:

`(θ) =

m∑
i=1

p(yi|xi;θ)

I MLE solution is the one that maximizes log-likelihood:

θ∗ = argmax
θ∈Rd

`(θ)

I Unfortunately, there is no analytical solution for finding θ∗, therefore
iterative methods have to be used.

I We could use the already familiar gradient ascent

I In practice, usually second order methods (e.g. L-BFGS) are used.
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Partial derivatives

I Partial derivatives take the following form:

∂`(θ)

∂θj
=

m∑
i=1

fj(xi, yi)−
m∑
i=1

∑
y

p(y|xi;θ)fj(xi, y)

I The first part
∑m

i=1 fj(xi, yi) is the sum of the j-th observed feature
value across the training data

I The second part is the sum of the expected features values across the
training data using the current model parameters.
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Regularization

I Usually, it is highly beneficial to add the regularization term:

`(θ) =

m∑
i=1

p(yi|xi;θ)−
λ

2
‖θ‖2

I Regularization penalizes large parameter values and thus avoids
overfitting

I Partial derivatives with regularization:

∂`(θ)

∂θj
=

m∑
i=1

fj(xi, yi)−
m∑
i=1

∑
y

p(y|xi;θ)fj(xi, y)− λθj
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