
Course ITI8531: Software Synthesis
and Verification

Lecture 14: Acacia+ LTL Synthesis part III

Spring 2019

Leonidas Tsiopoulos

leonidas.tsiopoulos@taltech.ee

Acacia+: A tool for LTL synthesis

• Main contributions:
• Efficient symbolic incremental algorithms based on antichains for game

solving.
• Synthesis of small winning strategies, when they exist. (today)
• Compositional approach for large conjunctions of LTL formulas. (today)
• Performance is better or similar to other existing tools but its main advantage

is the generation of compact strategies. (today)

• Application scenarios:
• Synthesis of control code from high-level LTL specifications.
• Debugging of unrealizable specifications by inspecting compact counter

strategies.
• Generation of small deterministic automata from LTL formulas, when they

exist.

07.05.2019 2

Acacia+ Safraless approach

07.05.2019 3

• Safety games are the simplest games to solve!

Acacia+ Safraless approach

07.05.2019 4

• Safety games are the simplest games to solve!

Example of tbUCW

07.05.2019 5

• tbUCW for Fq→ (pUq) where I = {q} and
O = {p}

• Output states QO = {1, 4, 6, 8} are
depicted by squares and input states QI

= {2, 3, 5, 7, 9} by circles
• T stands for the sets ΣI or ΣO, depending

on the context, ¬q (resp. ¬p) stands for
the sets that do not contain q (resp. p),
i.e. the empty set.

• At state 1, if controller does not assert p
and next the environment does not
assert q, then the run is in state 4. From
this state, whatever the controller does,
if the environment asserts q, then the
controller loses, as state 6 will be visited
infinitely often.

• A strategy for the controller is to assert p all the time,
therefore the runs will loop in states 1 and 2 until the
environment asserts q. Afterwards the runs will loop in
states 8 and 9, which are non-final.

Finite state strategies

• We know that if an LTL formula is realizable, there exists a finite-state strategy
that realizes it [PR89].

• Finite-state strategies are represented as complete Moore machines in Acacia+.

07.05.2019 6

• The LTL realizability problem reduces to decide, given a tbUCW A over inputs ΣI

and outputs ΣO, whether there is a non-empty Moore machine M such that
L(M) ⊆ Luc(A).

• The tbUCW is equivalent to an LTL formula given as input and is constructed by
using tools Wring or LTL2BA.

Determinization of UKCWs

• Lemma: UKCWs are determinizable.

• Sketch of Proof: Let A = (Σ, Q, q0, α, Δ, K) be a UKCW.

• For each state q, count the maximal number of final states visited by
runs ending up in q.
• Extending the usual subset construction with counters.

• Set of states F: counting functions F from Q to [-1,0,...,K+1].
• The counter of a state q is set to −1 when no run up to q visited final states.

• Initial counting function F0: q → (q0 ∈ α) if q = q0, -1 otherwise.

• Final states are functions F such that ∃q: F(q) > K.
• The final states are the sets in which a state has its counter greater than K.

07.05.2019 7

Determinization of tbUKCWs

• Let A be a tbUKCW (ΣO, ΣI, QO, QI, q0, α, ΔO, ΔI) with K ∈ ℕ.
• Let Q = QO ∪ QI and Δ = ΔO ∪ ΔI.

• Let det(A,K) = (ΣO,ΣI,FO, FI, F0, α´, δO, δI) where:
• Set of states FO: counting functions FO from QO to [-1,0,...,K+1].

• Set of states FI: counting functions FI from QI to [-1,0,...,K+1].

• Initial counting function F0: q ∈ QO → (q0 ∈ α) if q = q0, -1 otherwise.

• α´ = {F ∈ FO ∪ FI| ∃q, F(q) > K}.
• succ(F, σ) = q → max{min(K + 1, F(p) + (q ∈ α)) | q ∈ Δ(p, σ), F(p) ≠ −1}

• There is a successor state if the run up to p visited finaal states.

• δO = succ|FO × ΣO , δI = succ|FI × ΣI

07.05.2019 8

Reduction to Safety Games

• The game G(A,K) can be defined as follows:
• it is det(A,K) where input states are viewed as Player I’s states (env.) and

output states as Player O’s states (system).

• G(A,K) = (FO, FI, F0, T, safe) where safe = F\α´ and T = {(F, F´) |

∃σ ∈ ΣO∪ ΣI , F´ = succ(F, σ)}.

Theorem 2 (Reduction to a safety game). Let A be a tbUKCW over
inputs ΣI and outputs ΣO with n states (n > 0), and let K = 2n(n2n+2 + 1).
The specification A is realizable iff Player O has a winning strategy in
the game G(A,K).

07.05.2019 9

Safety Game

• A game arena is a tuple G = (SO, SI, s0, T, safe) where SI, SO are disjoint sets of
player states, s0 ∈ SO is the initial state, T ⊆ SO × SI ∪ SI × SO is the transition
relation and safe is the safety consition.

• A finite play on G of length n is a finite word π = π0π1 . . . πn ∈ (SO ∪ SI)
∗

s. t. π0 = s0 and for all i = 0, . . . , n − 1, (πi, πi+1) ∈ T.

• A winning condition W is a subset of (SOSI)
*.

• A play π is won by Player O if π ∈W, otherwise it is won by Player I.

• A strategy λi for Player i (i ∈ {I,O}) is a mapping that maps any finite play whose
last state s is in Si to a state s´ s. t. (s, s´) ∈ T.

• The outcome of a strategy λi of Player i is the set OutcomeG(λi) of infinite plays π =
π0π1π2 . . . s.t. for all j ≥ 0, if πj ∈ Si, then πj+1 = λi(π0, . . . , πj).

• A strategy λO for Player O is winning if OutcomeG(λO) ⊆ safeω.
• Must void the bad states!

07.05.2019 10

Safety Game

07.05.2019 11

Safety Game

07.05.2019 12

Safety Game

07.05.2019 13

Safe states
System

controller

wins if it has

a strategy to

keep the

system in

safe states.

Example of tbUCW

07.05.2019 14

• tbUCW for Fq→ (pUq) where I = {q} and
O = {p}

• Output states QO = {1, 4, 6, 8} are
depicted by squares and input states QI

= {2, 3, 5, 7, 9} by circles
• T stands for the sets ΣI or ΣO, depending

on the context, ¬q (resp. ¬p) stands for
the sets that do not contain q (resp. p),
i.e. the empty set.

• At state 1, if controller does not assert p
and next the environment does not
assert q, then the run is in state 4. From
this state, whatever the controller does,
if the environment asserts q, then the
controller loses, as state 6 will be visited
infinitely often.

• A strategy for the controller is to assert p all the time,
therefore the runs will loop in states 1 and 2 until the
environment asserts q. Afterwards the runs will loop in
states 8 and 9, which are non-final.

Solving safety games

• Algorithms for solving safety games are constructed using the so-
called controllable predecessor operator.

07.05.2019 15

Solving safety games with Acacia+

• Let G(A,K) = (FO, FI, F0, T, safe) and set of all counting functions F = FO ∪ FI.

• The controllable predecessor operator is based on the two following
monotonic functions over the superset of the counting functions 2F :
• PreI : 2FO → 2FI , PreO : 2FI → 2FO.

• Let P⊆ F be a subset of system positions. The safe controllable
predecessors of P are then:

CPre(P) = {F | ∃o ⊆ O, ∀F’, ((Fo),F’) ∈ T⇒ F’ ∈ P} ∩ safe

07.05.2019 16

Properties of the controllable predecessor - 1

• Let CPre = PreO ◦ PreI . Function CPre is monotonic over the complete
lattice (2FO, ⊆), and so it has a greatest fixed point denoted by CPre∗.

Theorem. The set of states from which Player O (the system) has a winning
strategy in G(A,K) is equal to CPre∗.

• By Theorem for the Reduction to a Safety Game, system has a winning
strategy in G(A,K) iff the initial state F0 ∈ CPre*.

07.05.2019 17

Properties of the controllable predecessor - 2

• F can be partially ordered by F ≼ F´ iff ∀q, F(q) ≤ F´(q).
• If system wins from F´, it can also win from F.

• CPre() preserves downward-closed sets.
• A set S ⊆ F is closed for≼, if ∀F ∈ S ・∀F´ ≼ F ・F´ ∈ S.
• For all closed sets S ⊆ F, the closure of S denoted by ↓S, is equal to S.

• A set S ⊆ F is an antichain if all elements of S are incomparable for ≼.

• The set of maximal elements of S is an antichain, S = {F ∈ S | ∄F´ ∈ S・

F´ ≠ F ∧ F ≼ F}.

• For Acacia+ antichains are a compact and efficient representation to
manipulate closed sets in F.

• Each (downward) set of the fixpoint computation is represented by its
maximal elements.

07.05.2019 18

Symbolic Fixpoint Computation

07.05.2019 19

Symbolic Fixpoint Computation

07.05.2019 20

Symbolic Fixpoint Computation

07.05.2019 21

Symbolic Fixpoint Computation

07.05.2019 22

Symbolic Fixpoint Computation

07.05.2019 23

maximal
elements of
the antichain

Synthesis of winning strategies

• If a formula φ is realizable, extract from the greatest fixpoint computation
a Moore machine that realizes it.

• Let 𝛱I ⊆ FI ∩ safe and 𝛱O ⊆ FO ∩ safe be the two sets obtained by the
greatest fixpoint computation.

• PreO(𝛱I) = 𝛱O , PreI (𝛱O) = 𝛱I --- 𝛱I and 𝛱O are downward-closed.

• By definition of PreO for all F ∈ 𝛱O , ∃ σF ∈ Σ such that

succ(F, σF) ∈ 𝛱I , and this σF can be computed.

• A Moore machine can be extracted:
• set of states is 𝛱O ,

• the output function maps any state F ∈ 𝛱O to σF ,
• the transition function maps F to a partially-ordered state F´ according to the

succ operator,
• and the initial state F0 is a state partially-ordered with F.

07.05.2019 24

Example of Moore machine synthesis

07.05.2019 25

• tbUCW for Fq→ (pUq)
• Start with the safe state in the game for

the system, denoted by
F1 = (1 → 1, 4 → 1, 6 → 1, 8 → 1).
• Then, for the system predecessor (Env.),
F2 := (2 → 1, 3 → 1, 5 → 0, 7 → 0, 9 → 1)
• Then for the controlled (System)

predecessor
CPre = (1 → 1, 4 → 0, 6 → 0, 8 → 1)
• At end of computation, the fixpoint is:
F := (1 → 1, 4 → −1, 6 →−1, 8 → 1)

Forward algorithm for solving games

• In Acacia+ also a forward algorithm can be applied to solve games.

• Compared to the backward algorithm, the forward algorithm has the
advantage that it computes only the winning positions F (for the System)
which are reachable from the initial position.

• But it can compute only one winning strategy.

• The algorithm explores the positions of the game and once a position is
known to be losing, this information is back propagated to the
predecessors.

• A position of Player System is losing iff it has no successors or all its
successors are losing.

• A position of Player Env. is losing iff one of its successors is losing.

07.05.2019 26

Forward algorithm – Sketch (1)

• At each step, maintain an under-approximation Losing of the set of
losing positions.

• A waiting-list Waiting for reachable position exploration and re-
evaluation of positions is used.

• An edge is put in the waiting-list if it is the first time it has been
reached, or the status of its target position has changed.

• If a position is known that is losing, this is back-propagated to all its
predecessors.

• A set Passed records the visited positions.

• a set Depend stores the edges (s, s´) which need to be re-evaluated
when the value of s´ changes.

07.05.2019 27

Forward algorithm – Sketch (2)

• At each step, pick an edge e = (s, s´) in the waiting-list.

• If its target s´ has never been visited, check if this target is losing
• When it has no successors.

• If losing, add e in the waiting-list for re-evaluation.
• Back propagate the information on s´.

• Otherwise add all the successors of s´ in the waiting-list for re-
evaluation.

• If s´ has already been visited, then compute the value of s.

• If s is losing, this information is back propagated to the positions
whose safeness depends on s.

07.05.2019 28

Compositional safety games and LTL synthesis

• Acacia+ implements a compositional approach for synthesis of large
conjunctions of LTL formulas.

• Realistic systems cannot be specified by just a couple of simple LTL
formulae.

• A scalable approach is very beneficial!

07.05.2019 29

Overview of compositional algorithms

• Two compositional algorithms for LTL formulas of the form

φ = φ1 ∧・・・∧ φn are implemented in Acacia+.

• Backward algorithm: At each stage of the parenthesizing, the antichains Wi

of the subformulae φi are computed backward and the antichain of the
formula φ itself is also computed backward from the Wi’s.
• All winning strategies for φ are computed and compactly represented by the

final antichain.

• Forward algorithm: At each stage of the parenthesizing, the antichains Wi

of the subformulae φi are computed backward, except at the last stage
where a forward algorithm seeks for one winning strategy by exploring the
game arena on the fly in a forward fashion.

07.05.2019 30

Compositional safety games

• Compositional reasoning on safety games is supported by the
existence of a most permissive strategy, a master plan.

• The master plan of System can be interpreted as a compact
representation of all the winning strategies of System against the
Environment.
• It contains all the moves that System can play in a state s in order to win the

safety game.

• The master plan associated with a game can be computed in a
backward fashion by using variants of the controllable operator CPre
and sequence of positions W.

07.05.2019 31

Composition of safety games

• Let Gi , i ∈ {1, . . . , n}, be n safety games Gi = (Si
1, Si2, Γi

1, Δi
1, Δi

2) defined on
the same sets of moves, Moves = Moves1 ⊎Moves2.

• Their product is the safety game G⊗ = (S⊗1 , S⊗2 , Γ⊗1 , Δ⊗1 , Δ⊗2) over the
product of the state spaces of the players, the intersection (common)
winning strategies of the System and the transitions conforming to the
winning strategy of System or to the moves of the Environment.

07.05.2019 32

Backward compositional solving of G⊗

• First, compute locally the master plans of the components.

• Then compose the local master plans and apply one time the CPre
operator to this composition to compute a function that contains
information about the one-step inconsistencies between local master
plans.

• Project back on the local components the information gained by the
function , and iterate.

07.05.2019 33

Forward compositional solving of G⊗

• Interested in computing a master plan only for the winning and reachable positions,
common for all sub-games. Example:

07.05.2019 34

Compositional LTL synthesis

• When a formula is given as a conjunction of subformulas i.e.,

ψ = φ1 ∧ φ2 ∧ · · · ∧ φn the safety game associated with this formula can be
defined compositionally.

• For each subformula φi the corresponding tbUKCW Aφi on the alphabet of
ψ is constructed and also their associated safety games G(φi,K).
• The notion of product is used at the level of turn-based automata.
• Executing the A1⊗A2 on a word w is equivalent to execute both A1 and A2 on

this word.

• The game G(ψ,K) for the conjunction ψ is isomorphic to the game
composition.

• The game is then solved compositionally by first computing the local
master plans to finally produce a compact (global) Moore machine, if it
exists.

07.05.2019 35

References

• An Antichain Algorithm for LTL Realizability . http://lit2.ulb.ac.be/acaciaplus/slides/cav09.pdf

Slides of presentation of the following paper at CAV 2009 conference.

• Filiot E., Jin N., Raskin JF. (2009) An Antichain Algorithm for LTL Realizability. In: Bouajjani A.,
Maler O. (eds) Computer Aided Verification. CAV 2009. Lecture Notes in Computer Science, vol
5643. Springer, Berlin, Heidelberg.

• http://lit2.ulb.ac.be/acaciaplus/ - link to the Acacia+ tool

• Filiot, E., Jin, N. & Raskin, JF. Antichains and compositional algorithms for LTL synthesis, Form
Methods Syst Des (2011) 39: 261. https://doi.org/10.1007/s10703-011-0115-3

07.05.2019 36

http://lit2.ulb.ac.be/acaciaplus/slides/cav09.pdf
http://lit2.ulb.ac.be/acaciaplus/

