
Homework 5, Machine Learning
Näıve Bayes classification

1 Task

The task in this homework is to build a näıve Bayes spam filter that classifies emails
as spam or non-spam. Näıve Bayes classifier computes the posterior probabilities of
an email being either spam or non-spam according to the Bayes rule:

P (S|D) =
P (D|S)P (S)

P (D)
=

P (D|S)P (S)

P (D|S)P (S) + P (D|S̄)P (S̄)
(1)

where S denotes the email being labeled as spam and S̄ as non-spam. D denotes the
email that is represented as a collection of words (bag-of-words). Näıve Bayes model
assumes conditional independence of words given the class labels. This means that all
the words in an email can be treated as conditionally independent of each other given
that we know whether the email was spam or not:

P (D|S) =

n∏
i=1

P (wi|S)

P (D|S̄) =

n∏
i=1

P (wi|S̄)

(2)

For building the model the following parameters must be learned:

P (S) =
NS

N

P (Ŝ) =
NŜ

N

P (wi|S) =
Nwi,S

NS

P (wi, Ŝ) =
Nwi,Ŝ

NŜ

,

where NS is the number of training items labeled as spam and Nwi,S is the number
of spam emails containing the word wi. Similar quantities with the non-spam emails
use the label Ŝ.

1

Use smoothing to avoid zero-probabilities by adding 1 in the numerator and the
number of possible outcomes (2 in the current case, because the email either contains
the word or not) into denominator like this:

P (wi|S) =
Nwi,S + 1

NS + 2
(3)

2 Data

We are using a publicly available dataset that can be downloaded from the address:
http://archive.ics.uci.edu/ml/datasets/Spambase. However, as this dataset
contains also other features than words then the part of the data necessary for this
homework has been already extracted and is available from the course website. Each
row represents an email. The vocabulary is quite small, containing only 48 different
words. The emails may have contained also other words but they have been discarded.
Each feature is either 0 or a positive number. The positive number indicates that this
word was seen in the respective email at least once. Thus, when building the model,
we treat the positive number in the data as 1 (the word was in the email) and 0 means
that this word was not present in the email. The correct labels (1 for spam and 0 for
non-spam) are in the first column.

3 Prediction

For predicting the label of a test item compute both the probability of the email being
spam and non-spam and normalize. If the probability of being spam is greater than
0.5 then classify it as spam, otherwise it should be classified as non-spam. When
computing the probabilities keep in mind that the probability of the feature being
turned on (word is present in the email) is given by the model, but we also must
multiply in the 0-valued features that are just complementary to the events of the
feature being turned on.

3.1 Implementation

It is better to keep the model probabilities in log-probabilities because this allows
during predicition to sum the probability terms instead of taking the product and
in this way we can avoid the possible numeric underflows as when we multiply to-
gether many numbers smaller than 1 the result will always get smaller and smaller.
When normalizing the log-probabilities, use the log-sum-exp trick, which allows to
exponentiate, sum and then log again a list of small numbers given in logs with-
out risking the numeric underflow. In Python, the log-sum-exp is built into the
scipy.misc library. It is also relatively easy to implement it, for details look for example
https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/.

2

http://archive.ics.uci.edu/ml/datasets/Spambase
https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/

4 Evaluation

For evaluation use the k-fold cross validation. Compute the accuracy (the number of
emails with correctly predicted labels) for each fold and print out the average accuracy
of all folds.

5 Toolkits

You can also use some toolkit or library to write the wrapper for executing experiments.
For python the recommended toolkit is scikit-learn: http://scikit-learn.org.
Look for examples in http://scikit-learn.org/stable/modules/naive_bayes.html

and the reference in http://scikit-learn.org/stable/modules/generated/sklearn.

naive_bayes.BernoulliNB.html#sklearn.naive_bayes.BernoulliNB.

6 Experiments

When writing your own program it is enough to just build a smoothed model and run
k-fold cross-validation on it. If you want to, you can also implement a more general
smoothing scheme where the smoothed probabilities are computed as:

P (wi|S) =
Nwi,S + α

NS + αK
, (4)

where K is the number of possible outcomes (2 in our case) and α is a hyperparameter.
You can experiment with different α values and find which works the best. A common
way to choose a hyperparameter is to try different values on a log-scale (for example
0.001, 0.002, 0.005, 0.01, 0.02, 0.05, etc up to some value, for example 10).

In case you are using library tools you should experiment thoroughly with the options
provided by the library and report the configuration that performs the best.

7 Write-up

The report should include a short description of the task, data and the implementation
(including how to run it and what options can be set). It should contain the detailed
description of the experiments you did, what parameters did you vary, how the results
changed with different parameter values.

When you vary some parameter value and record the squared loss with each value,
it would be good to represent such results with a figure that plots the accuracy as a
function of the parameter.

The report should also state clearly, which setting according to your experiments
produces the best results.

3

http://scikit-learn.org
http://scikit-learn.org/stable/modules/naive_bayes.html
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.BernoulliNB.html#sklearn.naive_bayes.BernoulliNB
http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.BernoulliNB.html#sklearn.naive_bayes.BernoulliNB

	Task
	Data
	Prediction
	Implementation

	Evaluation
	Toolkits
	Experiments
	Write-up

