
1. Solve for x

(a)

{
x ≡ 1 (mod 3)

x ≡ 2 (mod 4)
(b)

{
x ≡ 0 (mod 4)

x ≡ 3 (mod 7)

(c)

{
x ≡ 10 (mod 12)

x ≡ 3 (mod 5)
(d)

{
x ≡ 3 (mod 5)

x ≡ 5 (mod 6)

Solution. (a) The Bézout identity for (3, 4) is −1 · 3 + 1 · 4 = 1. Hence the solution is

x = 1 · 1 · 4 + 2 · (−1) · 3 = 4− 6 = −2 ≡ 10 (mod 12) .

One can observe that 10 mod 3 = 1 and 10 mod 4 = 2.
(b) The Bézout identity for (4, 7) is 2 · 4− 1 · 7 = 1. Hence the solution is

x = 3 · 2 · 4 + 0 = 24 (mod 28) .

One can observe that 24 mod 4 = 0 and 24 mod 7 = 3.
(c) The Bézout identity for (12, 5) is −2 · 12 + 5 · 5 = 1. Hence the solution is

x = 3 · −2 · 12 + 10 · 5 · 5 = −72 + 250 = 178 ≡ 58 (mod 60) .

One can observe that 58 mod 12 = 10 and 58 mod 5 = 3.
(d) The Bézout identity for (5, 6) is 1 · 6− 1 · 5 = 1. Hence the solution is

x = 5 · 5 · (−1) + 3 · 6 · 1 = −25 + 18 = −7 ≡ 23 (mod 30) .

One can observe that 23 mod 5 = 3 and 23 mod 6 = 5.

2. Solve for x

(a)


x ≡ 0 (mod 2)

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

(b)


x ≡ 1 (mod 2)

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

x ≡ 5 (mod 7)

Solution. (a) We’ve got 3 moduli, hence N = 2 · 3 · 5 = 30 and

N1 =
30

2
= 15 , N2 =

30

3
= 10 , N3 =

30

5
= 6 .

The Bézout identities for gcd(Ni, ni) are

gcd(15, 2) = 1 · 15 + (−7) · 2 = 1 ,

gcd(10, 3) = 1 · 10 + (−3) · 3 = 1 ,

gcd(6, 5) = 1 · 6 + (−1) · 5 = 1 .
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Hence, M1 =M2 =M3 = 1. We will use the formula

x ≡
k∑

i=1

aiMiNi (mod N) . (1)

Therefore,
x = 0 + 2 · 1 · 10 + 3 · 1 · 6 = 38 ≡ 8 (mod 30) .

To verify that 8 is indeed the solution, observe that

8 mod 2 = 0 , 8 mod 3 = 2 , 8 mod 5 = 3 .

(b) We’ve got 4 moduli, hence N = 2 · 3 · 5 · 7 = 210 and

N1 =
210

2
= 105 , N2 =

210

3
= 70 , N3 =

210

5
= 42 , N4 =

210

7
= 30 .

The Bézout identities for gcd(Ni, ni) are

gcd(105, 2) = 1 · 105 + (−52) · 2 = 1 ,

gcd(70, 3) = 1 · 70 + (−23) · 3 = 1 ,

gcd(42, 5) = (−2) · 42 + 17 · 5 = 1 ,

gcd(30, 7) = (−3) · 30 + 13 · 7 = 1 .

Hence, M1 =M2 = 1,M3 = −2,M4 = −3. By (1), the solution is

x = 1 · 1 · 105 + 2 · 1 · 70 + 3 · (−2) · 42 + 5 · (−3) · 30 = −457 ≡ 173 (mod 210) .

To verify that 173 is indeed the solution, observe that

173 mod 2 = 1 , 173 mod 3 = 2 , 173 mod 5 = 3 , 173 mod 7 = 5 .

3. Modified RSA signature scheme. First, let’s recall the regular RSA signatures.

(a) Alice selects sufficiently large primes p and q and calculates n = pq.
(b) Alice selects her public exponent e ∈ Z×

φ(n).

(c) Alice calculates her private exponent d ∈ Z×
φ(n) such that d · e ≡ 1 (mod φ(n)).

(d) Alice publishes her public key (e, n) to the key server, and keeps her private key (d, n)
to herself.

(e) To sign a document d̂, Alice takes a hash of it m = H(d̂) ∈ Zn.
(f) The signature of Alice is md mod n, she distributes it together with the document.
(g) To verify the signature, Bob downloads Alice’s public key (e, n) and computes(

md mod n
)e

mod n = mde mod n = m .

If m = H(d̂), the signature is valid.
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Now consider a modification to this scheme. Assume we do not need CRT to combine elements
in Z×

p and Z×
q into one structure Z×

pq. Instead, let’s just work in one ring Z×
n , where n is

sufficiently large prime. The modified scheme works as follows.

(a) Alice selects a sufficiently large prime n and selects her public exponent e ∈ Z×
φ(n).

(b) Alice calculates her private exponent d ∈ Z×
φ(n) such that d · e ≡ 1 (mod φ(n)).

(c) Alice publishes her public key (e, n) to the key server and keeps her private key (d, n)
to herself. To sign a document d̂, Alice takes a hash of it m = H(d̂) ∈ Zn.

(d) The signature of Alice is md mod n, she distributes it together with the document.
(e) To verify the signature, Bob downloads Alice’s public key (e, n) and computes(

md mod n
)e

mod n = mde mod n = m .

If m = H(d̂), the signature is valid.

This scheme is not secure against passive adversary Carol. It turns out that Carol can obtain
Alice’s private key from her public key (e, n) and only just one sample of her signature
md mod n. This will allow Carol to make as many fake signatures on behalf of Alice as she
wants with Alice being completely unaware of it. How can Carol obtain Alice’s private key
(d, n)?

Solution. Since n is prime, Carol can easily calculate ϕ(n) = n − 1. Given Alice’s public
exponent e ∈ Z×

n , Carol can calculate Alice’s private exponent in polynomial time using
extended Euclidean algorithm as follows

e ∈ Z×
n =⇒ gcd(e, n) = 1 .

Then, by the Bezout identity there exist ϕ, ψ ∈ Z such that ϕ · e+ψ ·n = 1, and hence Alice’s
private exponent d is d = ϕ = e−1 in Z×

n .

4. Let Alice send a message M to bob. Let Bob’s public key be (e, n). Adversary Carol sees the
cryptogram M e mod n. If M e < n, can Carol recover M?

Solution. Carol can recover M by calculating e
√
M

e
=M .
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