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The Cartesian product of sets A and B is the set of
ordered pairs

A × B = {(a, b) : a ∈ A ∧ b ∈ B} .

Let A = {x, y},B = {1, 2, 3}. Then

A × B = {(x, 1), (x, 2), (x, 3), (y, 1), (y, 2), (y, 3)}
B × A = {(1, x), (2, x), (3, x), (1, y), (2, y), (3, y)}

Observe that A × B ̸= B × A.

The Cartesian product of a set with itself is often denoted
by

R3 = R× R× R ,

Zn = Z× . . .× Z︸ ︷︷ ︸
n times

.



A binary relation R between sets A and B is the subset

R ⊆ A × B : ∀x ∈ A,∀y ∈ B : xRy ⇐⇒ (x, y) ∈ R .

Let A = {1, 2, 3} and B = {a, b, c}. An example of a
relation R ⊆ A × B is a set of pairs

R = {(1, a), (1, b), (2, c), (3, a)} .



The domain of R ⊆ A × B is the set

Dom(R) = {x ∈ A : ∃y ∈ B : xRy} .

The image of A under R ⊆ A × B is the set

Im(R) = {y ∈ B : ∃x ∈ A : xRy} .

The field of R is the set

Field(R) = Dom(R) ∪ Im(R) .



Let

A = {1, 2, 3} ,

B = {a, b, c} ,

R ⊆ A × B
= {(1, a), (1, b), (2, c), (3, a)} .

Then

Dom(R) = {1, 2, 3} ,

Im(R) = {a, b, c} ,

Field(R) = {1, 2, 3} ∪ {a, b, c}
= {1, 2, 3, a, b, c} .



Let

A = {1, 2, 3, 4} ,

B = {a, b, c, d} ,

R ⊆ A × B
= {(1, a), (1, b), (3, b), (3, d)} .

Then

Dom(R) = {1, 3} ,

Im(R) = {a, b, d} ,

Field(R) = {1, 3} ∪ {a, b, d}
= {1, 3, a, b, d} .



A binary relation R ⊆ A × B is injective (or left-unique)
if

∀x, z ∈ A,∀y ∈ B : xRy ∧ zRy =⇒ x = z .

The relation

R ⊆ R× R = {(x, y) : x ∈ R, y = x + 5 ∈ R}

is injective, since

∀a, b ∈ R : a + 5 = b + 5 =⇒ a = b .



The relation

R ⊆ R× R = {(x, y) : x ∈ R, y = x2 ∈ R}

is not injective, since

∀a, b ∈ R : a2 = b2 ≠⇒ a = b .

I.e.: (5, 25) ∈ R, (−5, 25) ∈ R, but 5 ̸= −5.



A binary relation R ⊆ A × B is functional (or
right-unique) if

∀x ∈ A,∀y, z ∈ B : xRy ∧ xRz =⇒ y = z .

The relation

R ⊆ R× R = {(x, y) : x ∈ R, y = x2 ∈ R}

is functional, since for every x ∈ R there is a unique
element x2 ∈ R. The situation xRy ∧ xRz is impossible.

Functional relations are also called partial function.



The relation

R ⊆ R× R = {(x, y) : x ∈ R, y =
√

x ∈ R}

is not functional. Because
√

25 = ±5, we have
(25, 5) ∈ R, (25,−5) ∈ R, but 5 ̸= −5.

A binary relation R is one-to-one if it is injective and
functional. In other words, a one-to-one relation is
left-unique and right-unique.



A binary relation R ⊆ A × B is left-total if

∀x ∈ A ∃y ∈ B : xRy .

The relation

R ⊆ R× R = {(x, y) : x ∈ R, y = x + 5 ∈ R}

is left-total, since ∀x ∈ R ∃x + 5 ∈ R.

The relation

R ⊆ R× R = {(x, y) : x ∈ R, y =
√

x ∈ R}

is not left-total, since −5 ∈ R, but
√
−5 /∈ R.



A binary relation R ⊆ A × B is surjective (or right-total,
or onto) if

∀y ∈ B ∃x ∈ A : xRy .

The relation

R ⊆ R× R = {(x, y) : x ∈ R, y = x + 5 ∈ R}

is surjective, since for every y ∈ R there exists
x = y − 5 ∈ R.

The relation

R ⊆ R× R = {(x, y) : x ∈ R, y = x2 ∈ R}

is not surjective, since −5 ∈ R, but there is no x ∈ R for
which x2 = −5.



A binary relation is a mapping (or a function) f : A → B
if it is functional (right-unique) and left-total.

In other words, R ⊆ A × B maps every element a ∈ A to a
unique element b ∈ B.

Let f : A → B be a mapping. We will use the following
notation:

a f7−→ b ⇐⇒ f(a) = b .



Suppose A = {1, 2, 3} and B = {a, b, c}. The relation

R ⊆ A × B = {(1, a), (2, c), (3, a)}

is a mapping, since it is functional and left-total. The
relation

G ⊆ A × B = {(1, a), (1, b), (2, c), (3, c)}

is not a mapping, since it is not functional – element 1 is
mapped to both a and b. The relation

H ⊆ A × B = {(1, a), (2, b)}

is functional, but not left-total, hence is not a mapping.



Since mapping f : A → B is left-total, then its domain

Dom(f) = {x ∈ A : ∃y ∈ B : xRy} = A .

In other words, the domain of a mapping f : A → B is the
set A.

The range of f : A → B is the set B.

The image of f : A → B is the set

f(A) = {f(a) : a ∈ A} ⊆ B .



An injection is an injective mapping – a binary relation
that is left-unique, right-unique, and left-total

A surjection (or onto mapping) is a surjective mapping
– a binary relation that is right-unique, left-total, and
right-total.

A mapping is a bijection (or one-to-one
correspondence) is a mapping which is injective and
surjective. In other words, left-unique, right-unique,
left-total, and right-total.



We are now ready to re–visit the set theory
again and introduce some definitions

omitted last time.



Cardinality of a set A (written |A|) is a measure of the
number of elements in the set.

The sets A and B are equinumerous (written |A| = |B|),
meaning that the sets A and B have the same cardinality if
there exists a bijection f : A → B.

For example, the set of even numbers E = {0, 2, 4, 6, . . .}
has the same cardinality as the set N, since the function
f(n) = 2n is a bijection f : N → E.



Cardinality of set A is less than or equal to the
cardinality of a set B (written as |A| ⩽ |B|) if there exists
an injective function from A to B.

Cardinality of set A is strictly less than the cardinality of
a set B (written as |A| < |B|) if there exists an injective
function from A to B, but no bijective function from A to B
exists.

For example, the cardinality of N is strictly less than the
cardinality of R. The mapping i : N → R is injective, but it
can be shown (Cantor’s first uncountability proof, Cantor’s
diagonal argument) that there does not exist a bijection
N → R.



It is interesting to note that the cardinality of a proper
subset of an infinite set can be the same as the cardinality
of the set itself. For instance, N ⊂ Z and |N| = |Z|. Let us
define a bijection Z → N.

. . .

−3 7→ 5
−2 7→ 3
−1 7→ 1

0 7→ 0
1 7→ 2
2 7→ 4
. . .

A set A is infinite if there exists A′ ⊂ A such that
|A′| = |A|.



A set A is countable if there exists an injective function
A → N.

A set A is countably infinite if there exists a bijection
A → N.

Infinity is the most weird, counter–intuituve, and the least
understood concept in mathematics.

I.e.: an interesting phenomena involving infinite sets – the
Banach–Tarski paradox.

https://www.youtube.com/watch?v=s86-Z-CbaHA

https://www.youtube.com/watch?v=s86-Z-CbaHA


Theorem (Cantor–Schröder–Bernstein)
If there exist injective functions A → B and B → A, there
exists a bijection A → B.

Corollary
If |A| ⩽ |B| and |B| ⩽ |A|, then |A| = |B|.




