ITC8190
 Mathematics for Computer Science Binary Relations Between Two Sets

Aleksandr Lenin

September 18th, 2018

The Cartesian product of sets A and B is the set of ordered pairs

$$
A \times B=\{(a, b): a \in A \wedge b \in B\}
$$

Let $A=\{x, y\}, B=\{1,2,3\}$. Then

$$
\begin{aligned}
A \times B & =\{(x, 1),(x, 2),(x, 3),(y, 1),(y, 2),(y, 3)\} \\
B \times A & =\{(1, x),(2, x),(3, x),(1, y),(2, y),(3, y)\}
\end{aligned}
$$

Observe that $A \times B \neq B \times A$.
The Cartesian product of a set with itself is often denoted by

$$
\begin{aligned}
& \mathbb{R}^{3}=\mathbb{R} \times \mathbb{R} \times \mathbb{R} \\
& \mathbb{Z}^{n}=\underbrace{\mathbb{Z} \times \ldots \times \mathbb{Z}}_{n \text { times }}
\end{aligned}
$$

A binary relation R between sets A and B is the subset

$$
R \subseteq A \times B: \forall x \in A, \forall y \in B: x R y \Longleftrightarrow(x, y) \in R
$$

Let $A=\{1,2,3\}$ and $B=\{a, b, c\}$. An example of a relation $R \subseteq A \times B$ is a set of pairs

$$
R=\{(1, a),(1, b),(2, c),(3, a)\}
$$

The domain of $R \subseteq A \times B$ is the set

$$
\operatorname{Dom}(R)=\{x \in A: \exists y \in B: x R y\} .
$$

The image of A under $R \subseteq A \times B$ is the set

$$
\operatorname{Im}(R)=\{y \in B: \exists x \in A: x R y\}
$$

The field of R is the set

$$
\operatorname{Field}(R)=\operatorname{Dom}(R) \cup \operatorname{Im}(R)
$$

Let

$$
\begin{aligned}
A & =\{1,2,3\} \\
B & =\{a, b, c\} \\
R & \subseteq A \times B \\
& =\{(1, a),(1, b),(2, c),(3, a)\}
\end{aligned}
$$

Then

$$
\begin{aligned}
\operatorname{Dom}(R) & =\{1,2,3\} \\
\operatorname{Im}(R) & =\{a, b, c\} \\
\text { Field }(R) & =\{1,2,3\} \cup\{a, b, c\} \\
& =\{1,2,3, a, b, c\}
\end{aligned}
$$

Let

$$
\begin{aligned}
A & =\{1,2,3,4\} \\
B & =\{a, b, c, d\} \\
R & \subseteq A \times B \\
& =\{(1, a),(1, b),(3, b),(3, d)\}
\end{aligned}
$$

Then

$$
\begin{aligned}
\operatorname{Dom}(R) & =\{1,3\} \\
\operatorname{Im}(R) & =\{a, b, d\} \\
\text { Field }(R) & =\{1,3\} \cup\{a, b, d\} \\
& =\{1,3, a, b, d\}
\end{aligned}
$$

A binary relation $R \subseteq A \times B$ is injective (or left-unique) if

$$
\forall x, z \in A, \forall y \in B: x R y \wedge z R y \Longrightarrow x=z
$$

The relation

$$
R \subseteq \mathbb{R} \times \mathbb{R}=\{(x, y): x \in \mathbb{R}, y=x+5 \in \mathbb{R}\}
$$

is injective, since

$$
\forall a, b \in \mathbb{R}: a+5=b+5 \Longrightarrow a=b
$$

The relation

$$
R \subseteq \mathbb{R} \times \mathbb{R}=\left\{(x, y): x \in \mathbb{R}, y=x^{2} \in \mathbb{R}\right\}
$$

is not injective, since

$$
\forall a, b \in \mathbb{R}: a^{2}=b^{2} \nRightarrow a=b
$$

I.e.: $(5,25) \in R,(-5,25) \in R$, but $5 \neq-5$.

A binary relation $R \subseteq A \times B$ is functional (or right-unique) if

$$
\forall x \in A, \forall y, z \in B: x R y \wedge x R z \Longrightarrow y=z
$$

The relation

$$
R \subseteq \mathbb{R} \times \mathbb{R}=\left\{(x, y): x \in \mathbb{R}, y=x^{2} \in \mathbb{R}\right\}
$$

is functional, since for every $x \in \mathbb{R}$ there is a unique element $x^{2} \in \mathbb{R}$. The situation $x R y \wedge x R z$ is impossible.

Functional relations are also called partial function.

The relation

$$
R \subseteq \mathbb{R} \times \mathbb{R}=\{(x, y): x \in \mathbb{R}, y=\sqrt{x} \in \mathbb{R}\}
$$

is not functional. Because $\sqrt{25}= \pm 5$, we have
$(25,5) \in R,(25,-5) \in R$, but $5 \neq-5$.
A binary relation R is one-to-one if it is injective and functional. In other words, a one-to-one relation is left-unique and right-unique.

A binary relation $R \subseteq A \times B$ is left-total if

$$
\forall x \in A \exists y \in B: x R y
$$

The relation

$$
R \subseteq \mathbb{R} \times \mathbb{R}=\{(x, y): x \in \mathbb{R}, y=x+5 \in \mathbb{R}\}
$$

is left-total, since $\forall x \in \mathbb{R} \exists x+5 \in \mathbb{R}$.
The relation

$$
R \subseteq \mathbb{R} \times \mathbb{R}=\{(x, y): x \in \mathbb{R}, y=\sqrt{x} \in \mathbb{R}\}
$$

is not left-total, since $-5 \in \mathbb{R}$, but $\sqrt{-5} \notin \mathbb{R}$.

A binary relation $R \subseteq A \times B$ is surjective (or right-total, or onto) if

$$
\forall y \in B \exists x \in A: x R y
$$

The relation

$$
R \subseteq \mathbb{R} \times \mathbb{R}=\{(x, y): x \in \mathbb{R}, y=x+5 \in \mathbb{R}\}
$$

is surjective, since for every $y \in \mathbb{R}$ there exists $x=y-5 \in \mathbb{R}$.

The relation

$$
R \subseteq \mathbb{R} \times \mathbb{R}=\left\{(x, y): x \in \mathbb{R}, y=x^{2} \in \mathbb{R}\right\}
$$

is not surjective, since $-5 \in \mathbb{R}$, but there is no $x \in \mathbb{R}$ for which $x^{2}=-5$.

A binary relation is a mapping (or a function) $f: A \rightarrow B$ if it is functional (right-unique) and left-total.

In other words, $R \subseteq A \times B$ maps every element $a \in A$ to a unique element $b \in B$.

Let $f: A \rightarrow B$ be a mapping. We will use the following notation:

$$
a \stackrel{f}{\mapsto} b \Longleftrightarrow f(a)=b .
$$

Suppose $A=\{1,2,3\}$ and $B=\{a, b, c\}$. The relation

$$
R \subseteq A \times B=\{(1, a),(2, c),(3, a)\}
$$

is a mapping, since it is functional and left-total. The relation

$$
G \subseteq A \times B=\{(1, a),(1, b),(2, c),(3, c)\}
$$

is not a mapping, since it is not functional - element 1 is mapped to both a and b. The relation

$$
H \subseteq A \times B=\{(1, a),(2, b)\}
$$

is functional, but not left-total, hence is not a mapping.

Since mapping $f: A \rightarrow B$ is left-total, then its domain

$$
\operatorname{Dom}(f)=\{x \in A: \exists y \in B: x R y\}=A .
$$

In other words, the domain of a mapping $f: A \rightarrow B$ is the set A.

The range of $f: A \rightarrow B$ is the set B.
The image of $f: A \rightarrow B$ is the set

$$
f(A)=\{f(a): a \in A\} \subseteq B .
$$

An injection is an injective mapping - a binary relation that is left-unique, right-unique, and left-total

A surjection (or onto mapping) is a surjective mapping - a binary relation that is right-unique, left-total, and right-total.

A mapping is a bijection (or one-to-one correspondence) is a mapping which is injective and surjective. In other words, left-unique, right-unique, left-total, and right-total.

We are now ready to re-visit the set theory again and introduce some definitions omitted last time.

Cardinality of a set A (written $|A|$) is a measure of the number of elements in the set.

The sets A and B are equinumerous (written $|A|=|B|$), meaning that the sets A and B have the same cardinality if there exists a bijection $f: A \rightarrow B$.

For example, the set of even numbers $E=\{0,2,4,6, \ldots\}$ has the same cardinality as the set \mathbb{N}, since the function $f(n)=2 n$ is a bijection $f: \mathbb{N} \rightarrow E$.

Cardinality of set A is less than or equal to the cardinality of a set B (written as $|A| \leqslant|B|$) if there exists an injective function from A to B.

Cardinality of set A is strictly less than the cardinality of a set B (written as $|A|<|B|)$ if there exists an injective function from A to B, but no bijective function from A to B exists.

For example, the cardinality of \mathbb{N} is strictly less than the cardinality of \mathbb{R}. The mapping $i: \mathbb{N} \rightarrow \mathbb{R}$ is injective, but it can be shown (Cantor's first uncountability proof, Cantor's diagonal argument) that there does not exist a bijection $\mathbb{N} \rightarrow \mathbb{R}$.

It is interesting to note that the cardinality of a proper subset of an infinite set can be the same as the cardinality of the set itself. For instance, $\mathbb{N} \subset \mathbb{Z}$ and $|\mathbb{N}|=|\mathbb{Z}|$. Let us define a bijection $\mathbb{Z} \rightarrow \mathbb{N}$.

$$
\begin{aligned}
-3 & \mapsto 5 \\
-2 & \mapsto 3 \\
-1 & \mapsto 1 \\
0 & \mapsto 0 \\
1 & \mapsto 2 \\
2 & \mapsto 4
\end{aligned}
$$

A set A is infinite if there exists $A^{\prime} \subset A$ such that $\left|A^{\prime}\right|=|A|$.

A set A is countable if there exists an injective function $A \rightarrow \mathbb{N}$.

A set A is countably infinite if there exists a bijection $A \rightarrow \mathbb{N}$.

Infinity is the most weird, counter-intuituve, and the least understood concept in mathematics.
I.e.: an interesting phenomena involving infinite sets - the Banach-Tarski paradox.
https://www.youtube.com/watch?v=s86-Z-CbaHA

Theorem (Cantor-Schröder-Bernstein)
If there exist injective functions $A \rightarrow B$ and $B \rightarrow A$, there exists a bijection $A \rightarrow B$.

Corollary
If $|A| \leqslant|B|$ and $|B| \leqslant|A|$, then $|A|=|B|$.

THANK YOU FOR
 YOUR ATTENTION ANY QUESTIONS?

