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Introduction

I Preparation

I Forecasting

I Motifs

I Time series to Sequences Data Mining

I Periodic Patterns

I Clustering

I Outlier Detection

I Classification
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Preparation

I Handling missing, unequally spaced, or unsynchronized values.
Linear interpolation: generates estimated values at the desired
time stamps. Let yi and yj are two values of the time series
at times ti and tj respectively, where j > i. Let t denote
desired time stamp from the interval (ti, . . . , tj). Then the
interpolated value corresponding to the time t is as follows:

y = yi +

(
t− ti
tj − ti

)
(yj − yi).
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Preparation

I Noise removal
I Binning. Assumption: the timestamps are equally spaced

apart. Divide the series into k equal intervals. The average
value of the data points in each interval are reported as the
smoothed values.

I Moving-Average Smoothing.
I Exponential Smoothing: smoothed value is defined as the

linear combination of the current value of the time series, and
the previously smoothed value.

y′i = αyi + (1− α)y′i−1.
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Preparation

I Normalization.
I Range-based normalization.
I Standardization.

I Data Transformation and Reduction.
I Discrete Wavelet Transform.
I Discrete Fourier Transform.
I Symbolic Aggregate Approximation (SAX).
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Time Series Similarity Measures

I DTW

I Edit Distance

I Longest Common Subsequence
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Time Series Forecasting

I Stationary and non stationary time series.

Definition
Time series is said to be stationary if the probabilistic distribution
of the values in any time interval [ti, tj ] is identical to that in the
shifted interval [ti + h, tj + h] for any value of the time shift h.

I Differencing is the common approach used to convert time
series into the stationary form.

y′i = yi − yi−1

I Second order differencing:

y′′i = yi − 2ti−1 + yi−2.

I Seasonal differencing:

yi = yi − yi−m
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Time Series Forecasting

I Autoregressive Models: Univariate time series contain a single
variable that may be predicted by means of autocorrelation.
Autocorrelations: the correlations between adjacently located
time stamps in the time series. The autocorrelations in a time
series are defined with respect to a particular value of the lag
L.

A(L) =
Ct(yt, yt+L)

Vt(yt)

I Autoregressive model:

yt =

p∑
i=1

αiyti + c+ εt

I The model can be used effectively for forecasting future
values, only if the key properties of the time series, such as
the mean, variance, and autocorrelation do not change
significantly with time.
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Time Series Forecasting

I One of the possible goodness parameters:

R2 = 1− µt(ε
2
t )

Vt(yt)
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Time Series Forecasting

I Autoregressive Moving Average Models. Autocorrelation does
not always explain all the variations. The unexpected
component of the variations (shocks) may be captured with
the use of moving average.

yt =

q∑
i=1

biεt−i + c+ εt

I Autoregressive Moving Average Model:

yt =

p∑
i=1

aiyt−1 +

q∑
i=1

biεt−1 + c+ εt

I Multivariate Forecasting with Hidden Variables
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Motifs

I A motif is a frequently occurring pattern or shape in the time
series.

I Single series versus database of many series.

I Contiguous versus noncontiguous motifs.

I Multigranularity motifs.

When does a motif belong to a time series?

I Distance-based support.

I Transformation to sequential pattern mining.

I Periodic patterns.
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Distance Based Motifs

I Distance-based motifs are always defined on contiguous
segments of the time series.

I Definition
A sequence (or motif) S = s1, . . . sw of real values is said to
approximately match a contiguous subsequence of length w in the
time series (y1, . . . yn) (w ≤ n) starting at position i, if the
distance between (s1, . . . , sw) and (yi, . . . yi+w1) is at most ε.

I Euclidean distance is a common choice in this case.

I Frequency of the motif:

Definition
The number of matches of a time series window S = s1 . . . sw to
the time series (y1 . . . yn) at threshold level ε, is equal to the
number of windows of length w in (y1 . . . yn), for which the
distance between the corresponding subsequences is at most ε.
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Clustering

I Real-time clustering.
I Online Clustering of Coevolving Series:based on determining

correlations across the series, in online fashion.

I Database of time series is available. Shape-Based Clustering.
I k-means.
I k-medoids.
I Hierarchical methods.
I Graph based methods.x
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Outlier detection

I Point outliers: A point outlier is a sudden change in a time
series value at a given timestamp.

I Shape outliers: In this case, a consecutive pattern of data
points in a contiguous window may be defined as an anomaly.
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Point outliers

I Determine the forecasted values of the time series at each
timestamp. Let the forecasted value of the of the rth
timestamp be dentoed W̄r

I Compute the time series of deviations ∆̄1, . . . , ∆̄r

∆̄r = W̄r − Ȳr.

I Let ∆̄r = {δ1r , . . . δdr}. Let the mean and standard deviation of
the i th series of deviations be denoted by µi and σi.

I Compute the normalized deviations:

δzir =
δir − µi
σi

I The unified alarm level Ur at timestamp r can be reported as:

Ur = max
i∈{1,...,d}σzir
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Classification

I Point labels: In this case, the class labels are associated with
individual timestamps. (Supervised event detection.)

I Whole-series labels: In this case, the class labels are
associated with the full series. (Whole series classification.)

I Wavelet-Based Rules.
I Nearest Neighbor Classifier.
I Graph-Based Methods.
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