Exercise: Function $\exp ()$ is defined as

$\exp (M, 0)=1$,
$\exp (M, N)=M^{*} \exp (M, N-1)$.
Write a program to compute $\exp (M, N)$ according to the definition.
Prove that the program computes M^{N}, if M, N are natural numbers
To solve the exercise you have to

- write a program
- formalize the specification as a pre- and post-condition
- find the loop invariant and annotate the program
- apply the rules to show that the program meets specification
- prove the verification conditions using predicate calculus and arithmetic

Program:

(4)

Proof:

\{Pre\} C1 \{Post\}
Prove (1)-(4) using predicate calculus and arithmetic:
(1) is trivially true
(2) Pre $\wedge \mathrm{Z}=1 \Rightarrow I n v$
$\mathrm{N}>0 \wedge \mathrm{~N}=\mathrm{n} \wedge \mathrm{Z}=1 \Rightarrow \mathrm{~N} \geq 0 \wedge \mathrm{Z}^{*} \mathrm{M}^{\mathrm{N}}=\mathrm{M}^{\mathrm{n}}$
$\mathrm{N}>0 \Rightarrow \mathrm{~N} \geq 0$
$N=n \wedge Z=1 \Rightarrow 1^{*} M^{n}=M^{n}$

(3)

$\mathrm{N} \geq 0 \wedge \mathrm{Z}^{*} \mathrm{M}^{\mathrm{N}}=\mathrm{M}^{\mathrm{n}} \wedge \neg(\mathrm{N}>0) \Rightarrow \mathrm{Z}=\mathrm{M}^{\mathrm{n}} \quad$ [rewrite Inv, Post]
$N \geq 0 \wedge \neg(N>0) \Rightarrow N=0$
$Z^{*} M^{0}=M^{n} \Rightarrow Z=M^{n}$
(4)
$\mathrm{N}>0 \Rightarrow \mathrm{~N}-1 \geq 0$
$Z{ }^{*} M^{N}=M^{n} \Rightarrow Z^{*} M^{*} M^{N-1}=M^{n}$
$Z^{*} M^{N}=M^{n} \Rightarrow Z^{*} M^{N}=M^{n}$
[arithm]
[rewrite $\mathrm{N}=0$; arithm]
[arithm]
[rewrite Inv, simplify] [arithm]

