Exercise: Function exp() is defined as exp(M,0) = 1, $\exp(M, N) = M^* \exp(M, N-1).$ Write a program to compute exp(M,N) according to the definition. Prove that the program computes M^N , if M, N are natural numbers

To solve the exercise you have to

- write a program
- formalize the specification as a pre- and post-condition ۲
- find the loop invariant and annotate the program •
- apply the rules to show that the program meets specification •
- prove the verification conditions using predicate calculus and arithmetic

[arithm]

[rewrite Z, N; arithm]

Proof:

% ≡ Pre $\{N>0 \land N=n\}$ Z:=1 { *Pre* ∧ Z=1} % annotation WHILE N>0 DO $\{N \ge 0 \land Z * M^N = M^n\}$ % ≡ Inv BEGIN C1 C2 Z := Z * M; N := N - 1; END; $\{Z = M^n\}$ % ≡ Post

4

Program:

		N>0 \land Inv \Rightarrow N -1 \ge 0 \land Z * M * M ^{N-1} = M ⁿ	
		$\{N{>}0 \ \land \ Inv \ \} \ Z{:=}Z^{*}M \ \ \{ \ N{-}1 \ge 0 \ \land \ Z \ ^{*} \ M^{N{-}1} = M^{r}$	(:=)) }
0	2	{N>0 ^ <i>Inv</i> } Z := Z * M; N := N -1 { <i>Inv</i>	(:= ; :=) '} ③
$Pre \Rightarrow Pre \land 1=1$	$Pre \land Z=1 \Rightarrow Inv$	$\{N>0 \land Inv\} C3 \{ Inv \}$	$- \text{ (bl)} \overline{Inv \land \neg(N>0)} \Rightarrow Post$
{ <i>Pre</i> } Z:=1 { <i>Pre</i> ∧ Z=1} (:=)	{ <i>Pre</i> ∧ z=1} C2 { <i>Post</i> }		(while)
	1 11 11	{ <i>Pre</i> } C1 { <i>Post</i> }	(,)
Prove U-@ using predicate calculus	and arithmetic:		
① is trivially true		$ (3) N > 0 \land 7 * M^N = M^n \land (N < 0) \longrightarrow 7 - $	M ⁿ [rewrite Inv Posf
② Pre ∧ Z=1 ⇒ Inv N>0 ∧ N=n ∧ Z=1 ⇒ N ≥ 0 ∧ Z *	M ^N = M ⁿ [rewrite <i>Pre</i> .	$N \ge 0 \land \neg (N>0) \Rightarrow N = 0$ $Inv! \qquad Z * M^0 = M^n \Rightarrow Z = M^n$	[arithm] [rewrite N=0: arithm]

(4)

 $N>0 \Rightarrow N-1 \ge 0$ [arithm] $Z * M^{N} = M^{n} \Longrightarrow Z * M * M^{N-1} = M^{n}$ [rewrite *Inv*, simplify] $Z * M^{N} = M^{n} \Longrightarrow Z * M^{N} = M^{n}$ [arithm]

 $N=n \land Z=1 \Rightarrow 1 * M^n = M^n$

 $N>0 \Rightarrow N \ge 0$