
Exercise: Function exp() is defined as Program:

exp(M,0) = 1,

exp(M,N) = M*exp(M, N-1).

Write a program to compute exp(M,N) according to the definition.

Prove that the program computes M
N
, if M, N are natural numbers

To solve the exercise you have to

 write a program

 formalize the specification as a pre- and post-condition

 find the loop invariant and annotate the program

 apply the rules to show that the program meets specification

 prove the verification conditions using predicate calculus and arithmetic

Proof:

 N>0 Inv N -1 0 Z * M * MN-1 = Mn

 {N>0 Inv } Z:=Z*M { N-1 0 Z * MN-1 = Mn }

 {N>0 Inv } Z := Z * M; N := N -1 { Inv }

 Pre Pre 1=1 Pre Z=1 Inv {N>0 Inv } C3 { Inv } Inv (N>0) Post

 {Pre} Z:=1 { Pre Z=1} {Pre z=1} C2 { Post}

{Pre} C1 {Post}
Prove - using predicate calculus and arithmetic:

 is trivially true

 Pre Z=1 Inv

N>0 N=n Z=1 N 0 Z * MN = Mn [rewrite Pre, Inv]

N>0 N 0 [arithm]

N=n Z=1 1 * Mn = Mn [rewrite Z, N; arithm]

N 0 Z * MN = Mn
 (N>0) Z= Mn [rewrite Inv, Post]

N 0 (N>0) N = 0 [arithm]

Z * M0 = Mn
 Z= Mn [rewrite N=0; arithm]

N>0 N -1 0 [arithm]

Z * MN = Mn
 Z * M * MN-1 = Mn [rewrite Inv, simplify]

Z * MN = Mn
 Z * MN = Mn [arithm]

{N>0 N=n} % ≡ Pre

Z:=1 { Pre Z=1} % annotation
WHILE N>0 DO

 {N 0 Z * MN = Mn} % ≡ Inv
 BEGIN
 Z := Z * M;
 N := N - 1;
 END;
{Z= Mn} % ≡ Post

C1
C2

C3

(:=)

(;)

(while)

(bl)

(:= ; :=)

(:=)

