
Notes on Probability Theory
There are 3 kinds of probabilities:

1. Marginal probability – the probability of an event.
Example 1. Given a uniformly distributed random variable X with range RX = {1, 2, 3, 4, 5, 6},
we can ask what is the probability Pr[X = 6]. Considering the uniform distribution of X, we
can say Pr[X = 6] = 1

6 .

2. Joint probability – the probability of intersection of two or more events. I.e., Pr[A∩B] is the
probability of an event that events A and B happen at the same time.

3. Conditional probability – the probability that some event A happens given that some other
event B has happened. Written as Pr[A|B] – the probability of event A given B.

The multiplication rule binds all the 3 kinds of probabilities together into one relation:

Pr[A ∩B] = Pr[A|B] · Pr[B] = Pr[B|A] · Pr[A] .

If events A and B are independent, then Pr[A|B] = Pr[A] and Pr[B|A] = Pr[B], and the multi-
plication rule takes the form of

Pr[A ∩B] = Pr[A] · Pr[B] .

Example 2. Getting ”A” in this course does not depend on the color of your hair, and we can say
that Pr[”A”|red hair] = Pr[”A”|green hair] = Pr[”A”].
Example 3. Consider two uniformly distributed random variables X with range RX = {1, 2, 3, 4, 5, 6},
and Y with range RY = {heads, tails}. Calculate Pr[X = 6, Y = heads].
Solution. The probability that X = 6 does not depend on whether Y = heads or Y = tails. And
so

Pr[X = 6, Y = heads] = Pr[X = 6|Y = heads]·Pr[Y = heads] = Pr[X = 6]·Pr[Y = heads] = 1

6
·1
2
=

1

12
.

The probability of a union of two events is calculated as

Pr[A ∪B] = Pr[A] + Pr[B]− Pr[A ∩B] .

In class we’ve drawn a picture on the whiteboard demonstrating the intuition behind this formula
using counting. If A and B are mutually exslusive (meaning that they can never happen at the
same time), then A ∩B = ∅, and Pr[A ∩B] = 0, and the formula takes its simplified form

Pr[A ∪B] = Pr[A] + Pr[B] .

Example 4. Continuing the story of Example 3, we can ask what is Pr[X = 6 or Y = heads].
Since these events are not mutually exclusive (they can happen at the same time), then

Pr[X = 6 or Y = heads] = Pr[X = 6]+Pr[Y = heads]−Pr[X = 6∩Y = heads] = 1

6
+
1

2
− 1

12
=

7

12
.

As an example of mutually exclusive events, consider an events X = 5 and X = 6. The probability
of getting a 5 or a 6 is

Pr[X = 5 or X = 6] = Pr[X = 5] + Pr[X = 6] =
1

6
+

1

6
=

1

3
.
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Example 5. Consider a class of 30 students, 17 of whom are foreigners, and the rest 13 are local
students. The rest results show that 4 foreigners and 5 local students made an ”A”. What is the
probability that a randomly selected student will be a local student, or the one who got an ”A”?

Solution. Since these events are not mutually exclusive (a local student can get an ”A”),

Pr[local or ”A”] = Pr[local] + Pr[”A”]− Pr[local and ”A”] = 13

30
+

9

30
− 5

30
=

17

30
.

Example 6. Imagine that we wish to learn if the salary rate influences the color of one’s car.
For this reason, we have conducted interviews with employees of an enterprise, and collected their
responses. The aggregated view can be seen in Table 1. It can be seen that

Table 1: Salary rate vs car color
red car other color

low salary 28 252
high salary 7 63

Pr[high salary|red car] = 1

5
= Pr[high salary] ,

Pr[low salary|red car] = 4

5
= Pr[low salary] ,

Pr[high salary|not red car] = 1

5
= Pr[high salary] ,

Pr[low salary|not red car] = 4

5
= Pr[low salary] .

So we can conclude that the salary rate and the color of a car are independent and do not influence
each other.

Example 7. If we study the relationship of the salary rate and the presence of B.Sc degree, we
can see a different statistics. Among all the respondents, 30% have B.Sc degree, and 40% evaluated
their salary rate as high. Among those who has a B.Sc, 80% have high salaries. 20% of people
without B.Sc also get high salaries. We are interested to determine if the salary rate depends on
the presence or absence of a B.Sc degree.

We can see that
Pr[high salary|B.Sc] = 4

5
̸= 2

5
̸= Pr[high salary] ,

and hence these parameters correlate.

The multiplication rule

Pr[A ∩B] = Pr[A|B] · Pr[B] = Pr[B|A] · Pr[A]

provides us with the relationship between Pr[A|B] and Pr[B|A]. We can see that

Pr[A|B]︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
Pr[B|A] ·

prior︷ ︸︸ ︷
Pr[A]

Pr[B]︸ ︷︷ ︸
evidence

.
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This is known as the Bayes’ Theorem. It allows us to make guesses about observations based on
our prior knowledge. Consider the following example.

Example 8. Assume you are standing in a line to a football match and see someone with long hair.
You have no idea is it a man or a woman. The Bayes’ theorem allows us to compute a distribution
of the likelihood of this person being a man or a woman, considering that we observe a long hair.

Our prior knowledge about the world is the following. Since it is a line to a football match,
we expect to meet men more likely then women. We believe that, on average, out of 100 people,
there are 98 men and 2 women. 94 men have short hair, 4 men have long hair. Among women, we
believe that the distribution is even, meaning that 1 woman has short hair, and 1 woman has long
hair. We observe a long hair in front of us and ask is this person more likely a man or a woman?

Solution. Applying the Bayes’ theorem, we get

Pr[man|long hair] = Pr[long hair|man] · Pr[man]
Pr[long hair] .

Let us now calculate individual parts of this equation. Pr[man] is the probability that a randomly
selected person is a man. This probebility is equal to

Pr[man] = 98

100
.

Pr[long hair|man] is the probability that a randomly selected man will have long hair.

Pr[long hair|man] = 4

98
.

Pr[longhair] is the probability that a randomly selected person will have a long hair. Since
men and women both can have long hair, this event can be decomposed into a union of two joint
probabilities

Pr[long hair] = Pr[man, long hair ∪ woman, long hair] .

Pr[man, long hair] is the joint probability of an event that a randomly selected person will be a
man with long hair. Pr[woman, long hair] is the joint probability that a randomly selected person
will be a woman with long hair.

Pr[man, long hair] = Pr[man] · Pr[long hair|man] = 98

100
· 4

98
=

4

100
,

Pr[woman, long hair] = Pr[woman] · Pr[long hair|woman] = 2

100
· 12 =

1

100
,

Since events ”man with long hair” and ”woman with long hair” are mutually exclusive (you can’t
be a man and a woman at the same time), then

Pr[long hair] = Pr[man, long hair] + Pr[woman, long hair] = 4

100
+

1

100
=

5

100
.

Now we have all pieces of the puzzle ready to be plugged into the Bayes’ formula.

Pr[man|long hair] = Pr[long hair|man] · Pr[man]
Pr[long hair] =

4 · 98 · 100
98 · 100 · 5

=
4

5
= 0.8 .

The Bayes’ theorem is extensively used in statistics (Bayesian inference) and machine learning
(naive Bayes classifier).
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