Neural Network Intuition. Backward Propagation. The XOR problem.

Elli Valla (TalTech, Department of Software Science)

Elli Valla

- PhD student and junior researcher at
 - Department of Software Science
 - TalTech University
 - elli.valla@taltech.ee

Elli Valla (TalTech, Department of Software Science)

model	accuracy_mean	precision_mean	sensitivity_mean	specificity_mean	f1_mean	roc_auc_mean
LogReg	0.8218	0.8133	0.7500	0.8714	0.7683	0.8833
RF	0.8018	0.7367	0.7500	0.8381	0.7341	0.7875
KNN	0.8055	0.8476	0.7000	0.8810	0.7359	0.8792
SVM	0.8418	0.8933	0.7000	0.9381	0.7683	0.8250
DT	0.6655	0.5700	0.6000	0.7095	0.5748	0.6548
AdaBoost	0.7200	0.6667	0.6000	0.8000	0.6286	0.7958
LogReg	0.8218	0.8133	0.7500	0.8714	0.7683	0.8917
RF	0.8018	0.7600	0.7000	0.8714	0.7206	0.8387
KNN	0.8055	0.8476	0.7000	0.8810	0.7359	0.8792
SVM	0.8600	0.9333	0.7000	0.9667	0.7905	0.8083
DT	0.7636	0.7500	0.7000	0.8048	0.7056	0.7524
AdaBoost	0.7036	0.6167	0.6000	0.7762	0.5957	0.7524
LogReg	0.8218	0.8133	0.7500	0.8714	0.7683	0.8917
RF	0.8018	0.7433	0.7500	0.8381	0.7421	0.8387
KNN	0.8055	0.8476	0.7000	0.8810	0.7359	0.8792
SVM	0.8600	0.9333	0.7000	0.9667	0.7905	0.9000
DT	0.7636	0.6967	0.7000	0.8048	0.6897	0.7524
AdaBoost	0.6836	0.5833	0.5500	0.7762	0.5481	0.7190
LogReg	0.8800	0.9333	0.7500	0.9667	0.8286	0.9083
RF	0.7818	0.7600	0.6500	0.8714	0.6921	0.8179
KNN	0.8418	0.8933	0.7000	0.9381	0.7683	0.8125
SVM	0.8418	0.8933	0.7000	0.9381	0.7683	0.8667
DT	0.6655	0.5833	0.6000	0.7095	0.5865	0.6548
AdaBoost	0.7236	0.5833	0.6000	0.8095	0.5767	0.8125

Plan for today:

- A recap of Logistic Regression.
- Logical Operations (OR, AND, NOR, XOR).
- Forward and backward propagation.
- Practice in MATLAB.

Machine Learning spring 2021

- 1 a cat is in the image
- 0 there's no cat in the image

64

64

Elli Valla (TalTech, Department of Software Science)

64

Elli Valla (TalTech, Department of Software Science)

64

64

Machine Learning spring 2021

64

64

 $L(\hat{y}, y) = -(y \log \hat{y} + (1-y) \log(1-\hat{y}))$

Sigmoid

Machine Learning spring 2021

Elli Valla (TalTech, Department of Software Science)

Machine Learning spring 2021

Activation functions

Rectified Linear Unit

Activation functions

Most common default choice

Activation functions

Softmax

 $\sigma(Z)_i = \frac{e^{z_i}}{\sum_j^K e^{z_j}}$

Elli Valla (TalTech, Department of Software Science)

Machine Learning spring 2021

Training process

Initialise parameters.

- Xavier initialisation¹
- He initialisation²
- Optimise parameters (define the loss function and choose an optimisation algorithm): 2.
 - Compute the loss function (forward propagation).
 - 2. Compute the gradients of the loss with respect to parameters (backward propagation).
 - 3. Update each parameter according to the optimisation algorithm.
- Use optimised parameters for prediction. 3.
 - Repeat steps 2.1-2.3

¹ Glorot et al, "Understanding the difficulty of training deep feedforward neural networks" (2010) ² He et al, "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification" (2015)

Logical Operators

The OR operation

Inclusive OR

Elli Valla (TalTech, Department of Software Science)

The XOR operation

Exclusive OR

X1

Logical Operators

The OR operation

Inclusive OR

Elli Valla (TalTech, Department of Software Science)

The XOR operation

Exclusive OR

X1

Logical Operators

Elli Valla (TalTech, Department of Software Science)

Machine Learning spring 2021

Elli Valla (TalTech, Department of Software Science)

•

2-layer neural network

•

-

Model Configuration

Activation function

(for both layers)

Loss function

$$L(\hat{y}, y) = -(y \log \hat{y} +$$

Optimization algorithm

Gradient decen $w^{[\prime]} = w^{[\prime]} - \alpha \frac{\partial L(y)}{\partial v}$ $b^{[I]} = b^{[I]} - \alpha \frac{\partial L(y, y)}{\partial b^{[I]}}$

 $\phi(z) = \frac{1}{1 + e^{-z}}$

$-(1-y)\log(1-\hat{y}))$

$$\frac{(y, \hat{y})}{w^{[l]}}$$

Forward propagation

• 1st layer - linear function:

$$Z^{[1]} = \begin{pmatrix} z_1^{[1]} & z_2^{[1]} \end{pmatrix} = \begin{pmatrix} x_1 w_{11}^{[1]} + x_2 \end{pmatrix}$$

• 1st layer - activation function:

$$A^{[1]} = \phi(Z^{[1]}) = \begin{pmatrix} a_1^{[1]} & a_2^{[1]} \end{pmatrix} = \begin{pmatrix} \frac{1}{1 + e^{-(x_1 w_{11}^{[1]} + x_2 w_{21}^{[1]})}} & \frac{1}{1 + e^{-(x_1 w_{12}^{[1]} + x_2 w_{22}^{[1]})}} \end{pmatrix}$$

• 2nd layer - linear function:

$$z^{[2]} = a_1^{[1]} w_{11}^{[2]} +$$

• 2nd layer activation function:

$$a^{[2]} = \phi(z^{[2]}) = rac{1}{1 + e^{-(a_1^{[1]}w_{11}^{[2]})}} + rac{1}{1 + e^{-(a_2^{[1]}w_{21}^{[2]})}}$$

 $x_2 w_{21}^{[1]} x_1 w_{12}^{[1]} + x_2 w_{22}^{[1]}$

 $a_{2}^{[1]} W_{21}^{[2]}$

Backward Propagation

•

Backward Propagation

Sigmoid derivative

$$\frac{\partial \sigma(x)}{\partial x} = \sigma(1 - \sigma)$$

$$\frac{\partial L(a^{[2]}, y)}{\partial a^{[2]}} = -\frac{y}{a^{[2]}} + \frac{1-y}{1-a^{[2]}} \qquad \frac{\partial a^{[2]}}{\partial z^{[2]}} = a^{[2]} \cdot (1-a^{[2]})$$

$$\frac{\partial L(a^{[2]}, y)}{\partial z^{[2]}} = \frac{\partial L(a^{[2]}, y)}{\partial a^{[2]}} \cdot \frac{\partial a^{[2]}}{\partial z^{[2]}} = a^{[2]} - y$$

$$\frac{\partial L(a^{[2]}, y)}{\partial w^{[2]}_{11}} = \frac{\partial L(a^{[2]}, y)}{\partial z^{[2]}} \cdot \frac{\partial z^{[2]}}{\partial w^{[2]}_{11}} = (a^{[2]} - y) \cdot a^{[1]}_{1}$$

$$\frac{\partial L(a^{[2]}, y)}{\partial w^{[2]}_{21}} = \frac{\partial L(a^{[2]}, y)}{\partial z^{[2]}} \cdot \frac{\partial z^{[2]}}{\partial w^{[2]}_{21}} = (a^{[2]} - y) \cdot a^{[1]}_{2}$$

Elli Valla (TalTech, Department of Software Science)

Backward Propagation

Sigmoid derivative

$$\frac{\partial \sigma(x)}{\partial x} = \sigma(1 - \sigma)$$

$$\frac{\partial L(a^{[2]}, y)}{\partial a^{[2]}} = -\frac{y}{a^{[2]}} + \frac{1-y}{1-a^{[2]}} \qquad \frac{\partial a^{[2]}}{\partial z^{[2]}} = a^{[2]}(1-a^{[2]})$$

$$\frac{\partial L(a^{[2]}, y)}{\partial z^{[2]}} = \frac{\partial L(a^{[2]}, y)}{\partial a^{[2]}} \cdot \frac{\partial a^{[2]}}{\partial z^{[2]}} = a^{[2]} - y$$

$$\frac{\partial L(a^{[2]}, y)}{\partial z^{[1]}} = \frac{\partial L(a^{[2]}, y)}{\partial a^{[2]}} \cdot \frac{\partial a^{[2]}}{\partial z^{[2]}} \cdot \frac{\partial z^{[2]}}{\partial a^{[1]}} \cdot \frac{\partial a^{[1]}}{\partial z^{[1]}} = (a^{[2]} - y) \cdot w^{[2]} \cdot a^{[2]}$$

$$\frac{\partial L(a^{[2]}, y)}{\partial w^{[2]}} = \frac{\partial L(a^{[2]}, y)}{\partial a^{[2]}} \cdot \frac{\partial a^{[2]}}{\partial z^{[2]}} \cdot \frac{\partial z^{[2]}}{\partial w^{[2]}} = \frac{\partial L(a^{[2]}, y)}{\partial z^{[2]}} \cdot \frac{\partial z^{[2]}}{\partial w^{[2]}} = i \left(a^{[2]} - \frac{\partial z^{[2]}}{\partial z^{[2]}}\right) \cdot \frac{\partial z^{[2]}}{\partial w^{[2]}} = i \left(a^{[2]} - \frac{\partial z^{[2]}}{\partial z^{[2]}}\right) \cdot \frac{\partial z^{[2]}}{\partial w^{[2]}} = i \left(a^{[2]} - \frac{\partial z^{[2]}}{\partial z^{[2]}}\right) \cdot \frac{\partial z^{[2]}}{\partial w^{[2]}} = i \left(a^{[2]} - \frac{\partial z^{[2]}}{\partial z^{[2]}}\right) \cdot \frac{\partial z^{[2]}}{\partial z^{[2]}} = i \left(a^{[2]} - \frac{\partial z^{[2]}}{\partial z^{[2]}}\right) \cdot \frac{\partial z^{[2]}}{\partial z^{[2]}} = i \left(a^{[2]} - \frac{\partial z^{[2]}}{\partial z^{[2]}}\right) \cdot \frac{\partial z^{[2]}}{\partial z^{[2]}} = i \left(a^{[2]} - \frac{\partial z^{[2]}}{\partial z^{[2]}}\right) \cdot \frac{\partial z^{[2]}}{\partial z^{[2]}} = i \left(a^{[2]} - \frac{\partial z^{[2]}}{\partial z^{[2]}}\right) \cdot \frac{\partial z^{[2]}}{\partial z^{[2]}} = i \left(a^{[2]} - \frac{\partial z^{[2]}}{\partial z^{[2]}}\right) \cdot \frac{\partial z^{[2]}}{\partial z^{[2]}} = i \left(a^{[2]} - \frac{\partial z^{[2]}}{\partial z^{[2]}}\right) \cdot \frac{\partial z^{[2]}}{\partial z^{[2]}} = i \left(a^{[2]} - \frac{\partial z^{[2]}}{\partial z^{[2]}}\right) \cdot \frac{\partial z^{[2]}}{\partial z^{[2]}} = i \left(a^{[2]} - \frac{\partial z^{[2]}}{\partial z^{[2]}}\right) \cdot \frac{\partial z^{[2]}}{\partial z^{[2]}} = i \left(a^{[2]} - \frac{\partial z^{[2]}}{\partial z^{[2]}}\right) \cdot \frac{\partial z^{[2]}}{\partial z^{[2]}} = i \left(a^{[2]} - \frac{\partial z^{[2]}}{\partial z^{[2]}}\right) \cdot \frac{\partial z^{[2]}}{\partial z^{[2]}} = i \left(a^{[2]} - \frac{\partial z^{[2]}}{\partial z^{[2]}}\right) \cdot \frac{\partial z^{[2]}}{\partial z^{[2]}} = i \left(a^{[2]} - \frac{\partial z^{[2]}}{\partial z^{[2]}}\right)$$

$$\frac{\partial L(a^{[2]}, y)}{\partial w^{[1]}} = \frac{\partial L(a^{[2]}, y)}{\partial a^{[2]}} \cdot \frac{\partial a^{[2]}}{\partial z^{[2]}} \cdot \frac{\partial z^{[2]}}{\partial a^{[1]}} \cdot \frac{\partial a^{[1]}}{\partial z^{[1]}} \cdot \frac{\partial z^{[1]}}{\partial w^{[1]}} = \frac{\partial L(a^{[2]}, y)}{\partial z^{[1]}} \cdot \frac{\partial z^{[2]}}{\partial z^{[1]}} \cdot \frac{\partial z^{[2]}}{\partial w^{[1]}} \cdot \frac{\partial z^{[2]}}{\partial z^{[1]}} \cdot \frac{\partial z^{[2]}}{\partial z^{[1]}} \cdot \frac{\partial z^{[2]}}{\partial w^{[1]}} = \frac{\partial L(a^{[2]}, y)}{\partial z^{[1]}} \cdot \frac{\partial z^{[2]}}{\partial z^{[1]}} \cdot \frac{\partial z^{[2]}}{\partial w^{[1]}} = \frac{\partial L(a^{[2]}, y)}{\partial z^{[1]}} \cdot \frac{\partial z^{[2]}}{\partial z^{[1]}} \cdot \frac{\partial z^{[2]}}{\partial w^{[1]}} = \frac{\partial L(a^{[2]}, y)}{\partial z^{[1]}} \cdot \frac{\partial z^{[2]}}{\partial z^{[1]}} \cdot \frac{\partial z^{[2]}}{\partial z^{[1]}} \cdot \frac{\partial z^{[2]}}{\partial z^{[1]}} \cdot \frac{\partial z^{[2]}}{\partial w^{[1]}} = \frac{\partial L(a^{[2]}, y)}{\partial z^{[1]}} \cdot \frac{\partial z^{[2]}}{\partial z^{[2]}} \cdot$$

Check:

the gradient with respect to a variable should have the same shape as the variable.

 $a^{[1]}(1-a^{[1]})$

– $y) \cdot a^{[1]}$

 $\frac{\partial z^{[1]}}{\partial w^{[1]}} = (a^{[2]} - y) \cdot w^{[2]} \cdot a^{[1]}(1 - a^{[1]}) \cdot x$

Elli Valla (TalTech, Department of Software Science)

Machine Learning spring 2021

Practice!

