Machine Learning

week 4, 2024

Review

Neural networks: layers of units/artificial neurons

Weights control how information from inputs influences the output layer

TODO: sync to week $2 / 3$ content

Overview

- probability (softmax)
- optimization (loss)
- representation of data (images)
- representation of data (text)
- learning an embedding
- similarity and distance of embeddings

Probability in Machine Learning

Output

Dog
Cat
What does the output say?

1. "Dog", with probability 0.86
2. It is certainly a cat or a dog, probability 1.0

Discuss: is this useful? Is this correct?

Probability in Machine Learning

x - input, such as
y - output, "Dog"
$P(y \mid x)$ - the neural network model
Read "probability of y, given x "

Probability in Machine Learning

$P(y \mid x)$ - the neural network model
How to make this happen?

Step 1: make the output look like probabilities using softmax
$\operatorname{softmax}\left(y_{k}\right)=\frac{e^{y_{k}}}{\sum_{k^{\prime}}^{d} e^{y_{k^{\prime}}}}$
d - number of outputs

y_{k}	softmax $\left(y_{k}\right)$	class
-0.12	0.107	cat
2	0.893	dog

Probability in Machine Learning

$P(y \mid x)$ - the neural network model
How to make this happen?

Step 2: train the network to match the real probability
$x=$ Cuse

$$
\begin{aligned}
& P(y=\operatorname{Cat} \mid x) ? \\
& P(y=\operatorname{Dog} \mid x) ?
\end{aligned}
$$

Training the Network

Loss measures how "wrong" the output is
Minimize this:

$$
L=-y_{\text {Cat }} \log \hat{y}_{\text {Cat }}-y_{\text {Dog }} \log \hat{y}_{\text {Dog }}
$$

Training the Network

$$
L=-y_{\text {cat }} \xrightarrow{\log \sqrt{\hat{y}_{\text {cat }}}-y_{\text {Dog }} \log \hat{y}_{\text {Dan }}}
$$

Discuss: how can you change them?
successful training:
loss decreases

Training the Network

Change the parameters in

2 param network, classify I. Setosa by petal length

Representing Images

CIFAR-10 image of a horse (32x32)

32 numbers
Color channels:

Representing Images

You see：

Neural network sees： $32 \times 32 \times 3=3072$ numbers

［ 28	30	33	62	63	31	29	42	55	67	92	76	57	75	69	57	74	98
86	71	59	62	57	42	51	46	41	38	37	43	52	46	27	27	21	38
60	39	41	47	48	72	120	103	66	75	110	134	146	153	146	139	125	130
190	76	87	85	87	01	Qa	117	117	115	24	22	24	28	87	$5)$	42	55
＋くJ	－	＋40	J	－	＋く4	－	＋	－	＋0フ	＋	$1<0$	$1<0$	1ヵフ	＋」フ	＋1＋	1く」	$1<4$
124	114	120	117	117	127	134	131	127	124	121	123	120	118	111	119	124	102
118	117	89	83	107	110	97	113	117	100	99	$96]$						

Representing Text

Step 1: words to numbers
"A blackbird is a black bird"

32	2042	16944	318	257	2042	6512
'A'	'black'	'bird'	' is'	'a'	' black'	' bird'

("tokenized" using tiktoken, GPT-2 encoding)

Representing Text

32	2042	16944	318	257	2042	6512
	'A'	'black'	'bird'	' is'	'a'	' black'

Problem solved? No.

Similar vectors (add +1):

| 33 | 2043 | 16945 | 319 | 258 | 2043 | 6513 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 'B' | 'IT' | '133' | 'on' | 'he' | 'IT' | 'fo' |

Representing Text

Representing Text

Can learn embeddings during network training:

Embeddings and Meaning

What is an "embedding"?

GloVe pre-trained embedding for "bird", size 200:

$$
\begin{aligned}
& \operatorname{array}([0.5612,-0.92374,-0.73493,-0.47596,0.12066 \text {, } \\
& -0.35696,-0.66272,-0.27035,-0.76995,-0.15108 \text {, } \\
& \text {-а गгаดл а 1глак -а ааклаг2 -а ај5872 -а агг7аг }
\end{aligned}
$$

$$
\begin{aligned}
& -0.1377 \text {, }-0.1964 \text {, } 0.14237 \text {, } 0.5167 \text {, }-0.52172 \\
& 0.10113,-0.14689,-0.027673,-0.42438,-0.3572]
\end{aligned}
$$

Embeddings and Meaning

verbs?

GloVe embeddings, general purpose

2D projection of words
seen in e.g. movie reviews
positive

