
Provably Correct Test Development for
Timed Systems

Jüri VAIN a,1, Aivo ANIER a and Evelin HALLING a

a Department of Computer Science, Tallinn University of Technology, Estonia

Abstract. Automated software testing is an increasing trend for improving the pro-
ductivity and quality of software development processes. That, in turn, rises issues
of trustability and conclusiveness of automatically generated tests and testing pro-
cedures. The main contribution of this paper is the methodology of proving the
correctness of tests for remote testing of systems with time constraints. To demon-
strate the feasibility of the approach we show how the abstract conformance tests
are generated, verified and made practically executable on distributed model-based
testing platform dTron.

Keywords. model-based testing, provably correct test generation, timed automata,
verification by model checking

Introduction

The growing competition in software market forces manufacturers to release new prod-
ucts within shorter time frame and with lower cost. That imposes hard pressure to soft-
ware quality. Extensive use of semi-automated testing approaches is an attempt to im-
prove the quality of software and related development processes in industry. Although a
wide spectrum of commercial and academic tools are available, the testing process still
involves strong human factor and remains prone to human errors. Even fully automated
approaches cannot guarantee trustable and conclusive testing unless the test automation
is correct by construction or exhaustively covered with correctness checks. Test automa-
tion and test correctness are the main subjects of study in model based testing (MBT).
Generally, MBT process comprises following steps: modelling the system under test, re-
ferred as Implementation-Under-Test (IUT), specifying the test purposes, generating the
tests and executing them against IUT.

In this paper we study how the correctness of test derivation steps can be ensured
and how to make the test results trustable throughout the testing process. In particular, we
focus on model-based online testing of software systems with timing constraints capital-
izing on the correctness of the test suite through test development and execution process.
In case of conformance testing the IUT is considered as a black-box, i.e., only the inputs
and outputs of the system are externally controllable and observable respectively. The
aim of black-box conformance testing [1] is to check if the behaviour observable on sys-

1Corresponding Author: Jüri Vain; Department of Computer Science, Tallinn University of Technology,
Akadeemia tee 15A, 12618 Tallinn, Estonia; E-mail: juri.vain@ttu.ee

tem interface conforms to a given requirements specification. During testing a tester exe-
cutes selected test cases on an IUT and emits a test verdict (pass, fail, inconclusive). The
verdict is computed according to the specification and a input-output conformance rela-
tion (IOCO) between IUT and the specification. The behaviour of a IOCO-correct imple-
mentation should respect after some observations following restrictions: (i) the outputs
produced by IUT should be the same as allowed in the specification; (ii) if a quiescent
state (a situation where the system can not evolve without an input from the environment
[2]) is reached in IUT, this should also be the case in the specification; (iii) any time an
input is possible in the specification, this should also be the case in the implementation.

The set of tests that forms a test suite is structured into test cases, each addressing
some specific test purpose. In MBT, the test cases are generated from formal models that
specify the expected behaviour of the IUT and from the coverage criteria that constrain
the behaviour defined in IUT model with only those addressed by the test purpose. In our
approach Uppaal Timed Automata (UPTA) [3] are used as a formalism for modelling
IUT behaviour. This choice is motivated by the need to test the IUT with timing con-
straints so that the impact of propagation delays between the IUT and the tester can be
taken into account when the test cases are generated and executed against remote real-
time systems. Another important aspect that needs to be addressed in remote testing is
functional non-determinism of the IUT behaviour with respect to test inputs. For non-
deterministic systems only online testing (generating test stimuli on-the fly) is applicable
in contrast to that of deterministic systems where test sequences can be generated off-
line. Second source of non-determinism in remote testing of real-time systems is com-
munication latency between the tester and the IUT that may lead to interleaving of inputs
and outputs. This affects the generation of inputs for the IUT and the observation of out-
puts that may trigger a wrong test verdict. This problem has been described in [4], where
the ∆-testability criterion (∆ describes the communication latency) has been proposed.
The ∆-testability criterion ensures that input/output interleaving never occurs.

1. Preliminaries

1.1. Uppaal Timed Automata

Uppaal Timed Automata (UPTA) [3] are widely used as one of the main modelling for-
malism for representing time constraints of software intensive systems. Before delving
into test construction we shortly introduce the syntax and semantics of UPTA.

A timed automaton is given as a tuple (L;E;V ;Cl; Init; Inv;TL). L is a finite set of
locations, E is the set of edges defined by E ∈ L×G(Cl,V)× Sync×Act × L, where
G(Cl,V) is the set of transition enabling conditions - guards. Sync is a set of synchro-
nization actions over channels. In the graphical notation, the locations are denoted by
circles and transitions by arrows. An action send over a channel h is denoted by h! and
its co-action receive is denoted by h?. Act is a set of sequences of assignment actions
with integer and boolean expressions as well as with clock resets. V denotes the set of
integer and boolean variables. Cl denotes the set of real-valued clocks (Cl∩V = /0).

Init ⊆ Act is a set of assignments that assigns the initial values to variables and
clocks. Inv : L→ I(Cl,V) is a function that assigns an invariant to each location, I(Cl,V)
is the set of invariants over clocks Cl and variables V . TL→{ordinary,urgent,committed}
is the function that assigns the type to each location of the automaton.

We can now define the semantics of UPTA in the way presented in [3]. A clock
valuation is a function valcl : Cl→ R≥0 from the set of clocks to the non-negative reals.
A variable valuation is a function valv : V → Z∪ BOOL from the set of variables to
integers and booleans. Let RCl and (Z∪BOOL)V be the sets of all clock and variable
valuations, respectively. The semantics of an UPTA is defined as a LTS (∑, init,→),
where ∑⊆ L×RCl×(Z∪BOOL)V is the set of states, the initial state init = Init(cl,v) for
all cl ∈Cl and for all v ∈V , with cl = 0, and→⊆ ∑×{R≤0∪Act}×∑ is the transition
relation such that:

(l,valcl ,valv)→ (l,valcl +d,valv) if ∀d′ : 0≤ d′ ≤ d⇒ valcl +d |= Inv(l),
(l,valcl ,valv)→ (l′,val′cl ,val′v) if ∃e = (l,act,G(cl,v),r, l′) ∈ E i.e.
valcl ,valv |= G(cl,v),val′cl = [re→ 0]valcl , and val′cl ,val′v |= Inv(l′),

where for delay d ∈ R≥0,valcl + d maps each clock cl in Cl to the value valcl + d,
and [re→ 0]valcl denotes the clock valuation which maps (resets) each clock in re to 0
and agrees with valcl over Cl\re.

1.2. Test Generation for On-line Testing

Reactive on-line testing means that the tester program has to react to observed outputs
of the IUT and to possible changes in the test goals on-the-fly. The rationale behind the
reactive planning method proposed in [5] lies in combining computationally hard offline
planning with time bounded online planning phases. Off-line phase is meant to shift the
computationally hard planning as much as possible in the test preparation phase. Here
the static analysis results of IUT model and the test goal are recorded in the format of
compact planning rules that are easy to apply later in the on-line phase. The on-line
planning rules synthesized must ensure close to optimal test runs and termination of the
test case when a prescribed test purpose is satisfied.

The RPT synthesis algorithm introduced in [5] assumes that the IUT model is an
output observable non-deterministic state machine ([6]). Test purpose (or goal) is a spe-
cific objective or a property of the IUT that the tester is set out to test. Test purpose is
specified in terms of test coverage items. We focus on test purposes that can be defined as
a set of boolean ”trap” variables associated with the transitions of the IUT model ([7]).
The goal of the tester is to drive the test so that all traps are visited at least once during
the test run.

The tester synthesis method outputs tester model as UPTA where the rules for online
planning are encoded in the transition guards called gain guards. The gain guard evalu-
ates true or false at the time of execution of the tester determining if the transition can be
taken from the current state or not. The value true means that taking the transition with
the highest gain is the best possible choice to reach unvisited traps from current state.
The decision rules for on-the-fly planning are derived by performing reachability anal-
ysis from the current state to all trap-equipped transitions by constructing the shortest
path trees. Since at each test execution step only the guards associated with the outgoing
transitions of the current state are evaluated, the number of guard conditions to be evalu-
ated at one planning step is relatively small (equal to the location-local branching factor
in the worst case). To implement such a gain guided model traversal, the gain guard is
constructed using (model and goal specific) gain functions and the standard function max
that return the maximum of those gain values that characterize alternative test paths.

Technically, the gain function of a transition returns a value that depends on the
distance-weighted reachability of the unvisited traps from the given transition. The gain

guard of the transition is true if and only if that transition is a prefix of the test sequence
with highest gain among those that depart from the current state. If the gain functions
of several enabled transitions evaluate to same maximum value the tester selects one of
these transitions using either random selection or “least visited first” principle. Each tran-
sition in the model is considered to have a weight and the gain of test case is proportional
to the length and the sum of weights of whole test sequence.

The RPT synthesis comprises three main steps (Figure 1):
1. extraction of the RPT control structure,
2. constructing gain guards,
3. reduction of gain guards according to the parameter “planning horizon” that de-

fines the pruning depth of the planning tree.

Figure 1. RPT synthesis workflow

In the first step, the RPT synthesiser analyses the structure of the IUT model and
generates the RPT control structure. In the second step, the synthesizer finds possibly
successful IUT runs for reaching the test goal.

Last step of the synthesis reduces the gain functions pruning the planning tree up
to some predefined depth that is given by parameter “planning horizon”. Since the RPT
planning tree has the longest branch proportional to the length of Euler’s contour in the
IUT model control graph the gain function’s recurrent structure may be very complex
and for practical purposes needs to be bounded by some planning horizon. Traps being
beyond the planning horizon still contribute in the gain function value but their distance
is just ignored. Thus, for deep branches of planning tree the gain function returns an
approximation of the gain value.

2. Correctness of IUT Models

2.1. Modelling Timing Aspects of IUT

For automated testing of input-output conformance of systems with time constraints we
restrict ourselves with a subset of UPTA that simplifies IUT model construction. Namely,
we use a subset where the data variables, their updates and transition guards on data vari-
ables are abstracted away. We use the clock variables only and the conditions expressed

by clocks and synchronization labels. An elementary modelling pattern for representing
IUT behaviour and timing constraints is Action pattern (or simply Action) depicted in
Figure 2.

Post_locationAction

clock_ <= u_bound

Pre_location
clock_ >= l_bound

out!in?
clock_=0

Figure 2. Elementary modelling fragment "Action"

An Action models a program fragment execution on a given level of abstraction
as one atomic step. The Action is triggered by input event and it responds with output
event within some bounded time interval (response time). The IUT input events (stimuli
in testing context) are generated by Tester, and the output events (IUT responses) are
to make the reactions of IUT observable to Tester. In UPTA, the interaction between
IUT and Tester is modelled by synchronous channels that mediate input/output events.
Receiving an input event from channel in is denoted by in? and sending an output event
via channel out is denoted by out!.

The major timing constraint we represent in IUT model is duration of the Action.
To make the specification of durations more realistic we represent it as a closed interval
[l_bound,u_bound], where l_bound denotes a lower bound and u_bound an upper bound
of the interval. Duration interval [l_bound,u_bound] can be expressed in UPTA as shown
in Figure 2. Clock reset ”clock = 0” on the edge ”Pre_location→ Action” makes the
time constraint specification local to the Action and independent from current value at
earlier execution steps. An invariant ”clock ≤ u_bound” of location ”Action” forces the
Action to terminate latest at time instant u_bound after the clock reset and guard ”clock≥
l_bound” of the edge ”Action→ Post_location” defines the earliest time instant w.r.t.
clock reset when the outgoing transition of Action can be executed.

From tester’s point of view IUT has two types of locations: passive and active. In
passive locations IUT is waiting for test stimuli and in active locations IUT chooses
its next moves, i.e. presumably it can stay in that location as long as specified by
location invariant. The location can be left when the guard of outgoing transition
Action→ Post_location evaluates to true. In Figure 2, the locations Pre_location and
Post_location are passive while Action is an active location.

We compose IUT models from Action pattern using two types of composition rules:
sequential and alternative composition.

Definition 1. Composition of Action patterns.
Let Fi and Fj be UPTA fragments composed of Action patterns (incl. elementary

Action) with pre-locations lpre
i ,lpre

j and post-locations lpost
i ,lpost

j respectively, their com-
position is the union of elements of both fragments satisfying following conditions:

• sequential composition F i;Fj is UPTA fragment where lpost
i = lpre

j ;
• alternative composition F i +Fj is UPTA fragment where lpre

i = lpre
j and lpost

i =

lpost
j .

The test generation method we highlighted in Section 1.2 relies on the notion of
well-formedness of the IUT model according to the following inductive definition.

Definition 2. Well-formedness (wf) of IUT models

• atomic Action pattern is well-formed;
• sequential composition of well-formed patterns is well-formed;
• alternative composition of well-formed patterns is well-formed if the output labels

are distinguishable;

Proposition 1. Any UPTA model M with non-negative time constraints and synchro-
nization labels that do not include state variables can be transformed to bi-similar to it
well-formed representation w f (M).

Note without the detailed proof that for those locations and edges of UPTA that do
not match with the Definition 2, the well-formedness needs adding auxiliary pre-, and
post-locations and ε-transition, that do not violate the i/o behaviour of original model.
For representing internal actions that are not triggered by external events (their incoming
edge is ε-labelled) we restrict the class of pre-locations with type "committed". In fact,
the subclass of models transformable to well-formed is broader than given by Definition
2, including also UPTA that have data variable updates, but in general wf -form does not
extend to models that include guards on data variables.

S3

S2S1

Action1

cl<=ub1

Action2

cl<=ub2

Action3

cl<=ub3

Action7

cl<=ub7

Action5

cl<=ub5

Action6

cl<=ub6

Action4

cl<=ub4

Action8

cl<=ub8

i1?
cl=0

cl>=lb1
o1!

t[8]=true

i2?
cl=0

cl>=lb2
o2!

t[7]=true

i3?
cl=0

cl>=lb3
o3!

t[6]=true

i7?
cl=0

cl>=lb7
o7!

t[5]=true

i5?
cl=0

cl>=lb5
o5!

t[4]=true

i6?
cl=0

cl>=lb6
o6!

t[1]=true

i4?
cl=0

cl>=lb4
o4!

t[2]=true

i8?
cl=0 cl>=lb8

o8!

t[3]=true

Figure 3. Simple example of well-formed IUT model

In the rest of paper, we assume for test generation that MIUT is well-formed and
denote this fact by w f (MIUT). An example of such an IUT model we use throughout the
paper is depicted in Figure 3.

2.2. Correctness of IUT Models

The test generation method introduced in [5] and developed further for EFSM models
in [8] assumes that the IUT model is connected, input enabled, output observable and
strongly responsive. In the following we demonstrate how the validity of these properties
usually formulated for IOTS (Input-Output Transition System) models can be ensured
for well-formed UPTA models (see Definition 2).

2.2.1. Connected Control Structure and Output Observability

We say that UPTA model is connected in the sense that there is an executable path from
any location to any other location. Since the IUT model represents an open system that
is interacting with its environment we need for verification by model checking a non-
restrictive environment model. According to [9] such an environment model has the role
of canonical tester. Canonical tester provides test stimuli and receives test responses in

any possible order the IUT model can interact with its environment. A canonical tester
can be easily generated for well-formed models according to the pattern depicted in
Figure 4b (this is canonical tester for the model shown in Figure 3).

S3

S2S1

Action1

cl<=ub1

Action2

cl<=ub2

Action3

cl<=ub3

Action7

cl<=ub7

Action5

cl<=ub5

Action6

cl<=ub6

Action4

cl<=ub4

Action8

cl<=ub8

i1?
cl=0

cl>=lb1
o1!

t[8]=true

i3?
cl=0

cl>=lb2
o3!

t[7]=true

i5?
cl=0

cl>=lb3
o5!

t[6]=true

i7?
cl=0

cl>=lb7
o7!

t[5]=true

i6?
cl=0

cl>=lb5
o6!

t[4]=true

i8?
cl=0

cl>=lb6
o8!

t[1]=true

i4?
cl=0

cl>=lb4
o4!

t[2]=true

i2?
cl=0 cl>=lb8

o2!

t[3]=true

o8?

i8!

o7?

i7!

o6?

i6!

o5? i5!

o4?

i4!

o3?

i3!

o2?

i2!

o1?i1!

Figure 4. Synchronous parallel composition of a) IUT and b) canonical tester models

The canonical tester implements the "random walk" test strategy that is useful in
endurance testing but it is very inefficient when functionally or structurally constrained
test cases need to be generated for large systems.

Having synchronous parallel composition of IUT and the canonical tester (shown in
Figure 4) the connectedness of IUT can be model checked with query (1) that expresses
the absence of deadlocks in interactions between IUT and canonical tester.

A[]not deadlock (1)

The output observability condition means that all state transitions of the IUT model
are observable and identifiable by the outputs generated by these transitions. Observabil-
ity is ensured by the definition of well-formedness of the IUT model where each input
event and Action location is followed by the edge that generates a locally (w.r.t. source
location) unique output event.

2.2.2. Input Enabledness

Input enabledness assumption means that blocking due to irrelevant test input during
test execution is avoided. Naive way of implementing this assumption in IUT models
presumes introducing self-looping transitions with input labels that are not represented
on other transitions that share the same source state. That makes IUT modelling tedious
and leads to the exponential increase of the MIUT size. Alternatively, when relying on the
notion of observational equivalence one can approximate the input enabledness in UPTA
by exploiting the semantics of synchronizing channels and encoding input symbols as
boolean variables I1...In ∈ Σ. Then the pre-location of the Action pattern (see Figure 2)
needs to be modified by applying the Transformation 1.

2.2.3. Transformation 1

• assume there are k outgoing edges from pre-location lpre
i of Actioni, each of these

transitions is labeled with some input I1...Ik ∈ Σi(Actioni)⊆ Σ;
• we add a self-looping edge lpre

i → lpre
i that models acceptance of all inputs in Σ

except those in Σi. Because of that we specify the guard of edge lpre
i → lpre

i as
boolean expression: not(I1∨ ...∨ Ik).

Provided the outgoing branching factor Bout
i of lpre

i is, as a rule, substantially smaller
than |Σ| we can save |Σ|−Bout

i − 1 edges at each pre-location of Action patterns. Note
that by w f -construction rules the number of pre-locations never exceeds the number of
actions in the model. That is due to alternative composition that merges pre-locations
of the composition. A fragment of alternative composition accepting inputs in Σi with
described additional edge for accepting symbols in Σ\Σi(Actioni) is depicted in Figure
5 (time constraints are ignored here, I1 and I2 in the figure denote predicates Input == i1
and Input == i2 respectively).

Post_location2Action2

Post_location1Action1

Pre_location
out!

I2=false,
O2=trueI2

in?

not(I1 or I2)
in?

out!

I1=false,
O1=true

I1
in?

Figure 5. Input enabled fragment

2.2.4. Strong Responsiveness

Strong responsiveness (SR) means that there is no reachable livelock (a loop that includes
only ε-transitions) in the IUT model MIUT . In other words, MIUT should always enter the
quiescent state after finite number of steps. Since transforming MIUT to w f (MIUT) does
not eliminate ε-transitions there is no guarantee that w f (MIUT) is strongly responsive by
default. To verify the SR propety of MIUT we apply Algorithm 1.

2.2.5. Algorithm 1

1. According to the Action pattern of Figure 5 the information of i/o events is spec-
ified using synchronization channel in and a boolean variable that represents re-
ceiving an input symbol Ii. Since Uppaal model checker is state based we need
recording the occurrence of input events in states. Therefore, the boolean variable
representing an input event is kept true in the destination location of the edge
that is labelled with given event and reset f alse immediately after leaving this
location. For same reason the ε-transitions are labelled with update EPS = true
and following output edge with update EPS = f alse.

2. Next, we reduce the model by removing all the edges and locations that are not
involved in the traces of model checking query: l0 |= E�EPS, where l0 denotes
initial location of MIUT . The query checks if any ε-transition is reachable from
l0 (necessary condition for violating SR-property).

3. Further, we remove all non ε-transitions and locations that remain isolated there-
after.

4. Remove recursively all locations that do not have incoming edges (their outgoing
edges will be deleted with them).

5. After reaching the fixed point of recursion of step 4 we check if the remaining part
of model is empty. If yes then we can conclude that MIUT is strongly responsive,
otherwise it is not.

It is easy to show that all steps except step 2 are of linear complexity in the size of the
MIUT .

3. Correctness of RPT Tests

3.1. Functional Correctness of Generated Tests

The tester program generated based on IUT model can be characterized using some test
coverage criteria it is designed for. As shown in Section 1.2, the RPT generating algo-
rithm is aimed at structural coverage of IUT model elements and can be expressed by
means of boolean "trap" variables. To recall, the traps are assignment expressions of
boolean trap variables and the valuation of traps indicates the status of the test run. For
instance, one can observe if the edges labeled with them are already covered or not in
the course of test run. Thus, the relevant correctness criterion for the tester generated is
its ability to cover traps.

Definition 3. Coverage correctness of the test.
We say that the RPT tester is coverage correct if the test run covers all the transitions

that are labelled with traps in IUT model.
Definition 4. Optimality of the test.
We say that the test is length (time) optimal if there is no shorter (accordingly faster)

test runs among all those being coverage correct.
We can show that the RPT method generates tests that are coverage correct (and

in general, close to optimal) by construction, if the planning horizon of gain function is
greater or equal to the depth of reduced reachability tree of MIUT . Though, the practical
limit of planning depth is set by Uppaal tool where the largest integer value of type ’long’
is 231. That allows distinctive encoding of gain function co-domain for test paths up to
depth 31. It means that if the IUT is fully connected and deterministic RPT provides a
test path that covers all traps length-optimally. In non-deterministic case it provides the
best strategy against any legal strategy the IUT chooses (legal in this context means that
any behaviour of IUT either conforms to its specification or is detectably violating it).

While the reachability tree exceeds given by the horizon depth limit the gain function
becomes stochastic (insensible to reachability tree structure deeper than the horizon). It
is distinctive on the number of deeper traps only, but it is not distinctive on their co-
reachability. Even though, the planning method with cross horizon depth has shown to
be statistically efficient by providing close to optimal test paths in large examples there is
threat of choosing infeasible paths if the model is not well-formed and/or not connected.

Instead of going into details of the proof (by structural induction) of RPT tester
generation correctness and optimality we provide ad-hoc verification procedure in terms
of model checking queries and model construction constraints.

Direct way of verifying the coverage correctness of the tester is to run a model
checking procedure with query:

A�∀(i : int[1,n]) t[i] , (2)

where t[i] denotes i-th element of the array of traps. The model the query is running on
is synchronous parallel composition of IUT and Tester automata. For instance, the RPT
automation for IUT modelled in Figure 3 is depicted in Figure 6.

3.2. Invariance of Tests with Respect to Changing Time Constraints of IUT

In section 2.2 the coverage correctness of RPT tests was discussed without explicit ref-
erence to MIUT time constraints. The length-optimality of test sequences can be proven

S3

S2S1

Action1

cl<=ub1

Action2

cl<=ub2

Action3

cl<=ub3

Action7

cl<=ub7

Action5

cl<=ub5

Action6

cl<=ub6

Action4

cl<=ub4

Action8

cl<=ub8

i1?
cl=0

cl>=lb1
o1!

t[8]=true

i3?
cl=0

cl>=lb2
o3!

t[7]=true

i5?
cl=0

cl>=lb3
o5!

t[6]=true

i7?
cl=0

cl>=lb7
o7!

t[5]=true

i6?
cl=0

cl>=lb5
o6!

t[4]=true

i8?
cl=0

cl>=lb6
o8!

t[1]=true

i4?
cl=0

cl>=lb4
o4!

t[2]=true

i2?
cl=0 cl>=lb8

o2!

t[3]=true
Observ1 Observ2

Observ3

Observ7 Observ5

Observ6

Observl4

Observl8

Control3

Control2Control1

o1?
o2?

o3?

o7? o5!

o6?

o4?

o8?

gtrans1(t)
i1!

gtrans2(t)
i2!

gtrans3(t)
i3!

gtrans4(t)

i7!

gtrans5(t)

i5!

gtrans6(t)
i6!

gtrans7(t)

i4!

gtrans8(t)

i8!

Figure 6. Synchronous parallel composition of IUT and RPT models

in Uppaal when for each Actioni both the duration lower and upper bounds lbi and ubi
equal to one, i.e., lbi = ubi = 1 for all i ∈ 1, ..., |Action|. Then the length of the test se-
quence and its duration in time are numerically equal. For instance, having some integer
valued (time horizon) parameter T H as an upper bound to the test sequence length the
following model checking query proves the coverage of n traps with a test sequence of
length at most T H stimuli and responses:

A�∀(i : int[1,n]) t[i] ∧ TimePass≤T H (3)

where TimePass is Uppaal clock that represents global time of the model.
Generalizing this result for IUT models with arbitrary time constraints we assume

that all edges of MIUT are attributed with time constraints as described in Section 2.1.
Since not all the transitions of model MIUT need to be labelled with traps (and thus cov-
ered by test) we apply compaction procedure to MIUT to abstract away from the excess of
information and derive precise estimates of test duration lower and upper bounds. With
compaction we aggregate consecutive trapless transitions with one trap-labelled transi-
tion the trapless ones are neighbours to. Now, the aggregate Action becomes like atomic
Action of Figure 2 that copies the trap of the only trap labelled transition included in
the aggregate. The first transition of the aggregate contributes its input event and the last
transition its output event. The other I/O events of the aggregate will be hidden because
all internal transitions and locations are substituted with one aggregate location we call
composite Action. Further, we compute the lower and upper bounds for the composite
action. The lower bound is the sum of lower bounds of the shortest path in the aggregate
and the upper bound is the sum of upper bounds of the longest path of the aggregate
plus the longest upper bound (the later is needed to compute the test termination condi-
tion). After compaction of deterministic and timed IUT model it can be proved that the
duration T H of a coverage correct tests have length that satisfies following condition:

∑
i

lbi ≤ T H ≤ ∑
i

ubi +max
i
(ubi), (4)

where index i ranges from 1 to n (n - number of traps in MIUT).
In case of non-deterministic IUT models, for showing length- and time-optimality

of generated tests the bounded fairness of MIUT needs to be assumed. We say that a
model M is k− f air iff the difference in the number of executions of alternative transi-
tions of non-deterministic choices never exceeds the bound k. This assumption excludes
unbounded "starvation" and "conspiracy" behaviour in non-deterministic models. Dur-
ing the test run our test execution environment dTron [10] is monitoring k-fairness and
reporting error message "violation of IUT k-fairness assumption" when this constraint is

broken. Due to k-fairness monitoring by dTron the safe estimate of the test length upper
bound in case of non-deterministic models can be found for the worst case by multiplying
the deterministic upper bound by factor k. The lower bound still remains ∑i lbi.

Proposition 2. Assuming a trap labelled UPTA model MIUT is well-formed in the
sense of Definition 2 and compactified, the RPT that is generated based on MIUT remains
invariant with respect to variations of the time constraints specified in MIUT .

The practical implication of Proposition 2 is that a RPT once generated for a timed
trap labeled UPTA model MIUT , one can use it for any syntactically and semantically
feasible modification of MIUT where only timing parameters and initial values of traps
have been changed. Invariance does not extend to structural changes of MIUT .

Due to the limited space we sketch the proof in two steps by showing that (i) the con-
trol decisions of MRPT do not depend on the timing of MIUT and (ii) the MRPT behaviour
does not influence the timing on controllable transitions of MIUT .

(i) The behaviour of MRPT depends on the gain guards of its controllable edges and
responses (output events) of MIUT , not on the time instances when these responses are
generated. Same applies to the gain guards. They are boolean functions defined on the
structure of MIUT and the valuation vector of traps. Thus the timing constraints specified
in MIUT do not influence the behaviour of MRPT .

(ii) In the synchronous parallel composition MIUT ||sync MRPT the actions of MIUT

and MRPT take the effect over progress of time alternatively. Though the communication
of input and output events is synchronous, it is due to the semantics of UPTA, that exe-
cution of transitions is instantaneous, and does not pose any constraint on the delay be-
tween earlier or later event. Since the planning time of MRPT is assumed to be negligible
comparing to the response time of MIUT we model the control locations in MRPT always
as committed locations (denoted by "c" in Figure 6) and there is no additional waiting
in obsevation locations of MRPT either. Thus, MRPT does not set any restriction to the
time invariants inv(Actioni)and transition guards grd(Actioni→ PostLocationi) of MIUT

actions.

4. Test Execution Environment dTron

Uppaal TRON is a testing tool, based on Uppaal [3] engine, suited for black-box confor-
mance testing of timed systems [11]. dTron [12] extends this enabling distributed execu-
tion. It incorporates Network Time Protocol (NTP) based real-time clock corrections to
give a global timestamp (t1) to events at IUT adapter(s). These events are then globally
serialized and published for other subscribers with a Spread toolkit [13]. Subscribers can
be other SUT adapters, as well as dTron instances. NTP based global time aware sub-
scribers also timestamp the event received message (t2) to compute and possibly com-
pensate for the overhead time it takes for messaging overhead ∆ = t2− t1.

∆ is essential in real-timed executions to compensate for messaging delays that may
lead to false-negative non-conformance results for the test-runs. Messaging overhead
caused by elongated event timings may also result in messages published in on order, but
revived by subscribers in another. ∆ can then also be used to re-order the messages in a
given buffered time-window t∆. Due to the online monitoring capability dTron supports
the functionality of evaluating upper and lower bounds of message propagation delays
by allowing the inspection of message timings. While having such a realistic network

latency monitoring capability in dTron our test correctness verification workflow takes
into account theses delays. For verfication of the deployed test configuration we make
corresponding time parameter adjustments in the IUT model. By Proposition 2 the RPT
tester generated is invariant to time parameter variations. Thus final verification against
the query 3 is proving that the test is feasible as well in the presence of realistic configu-
ration constraints of the testing framework dTron.

5. Web Testing Case-study

We describe street light control system (SLCS) to show the applicability of the proposed
testing workflow. The SLCS has a central server and multiple controllers each control-
ling one or more streetlight. The controllers have programmable high-power relays (con-
tactors) to manipulate the actual lights, but also have various sensor and communica-
tion extensions to provide supplementary capabilities like dimming and following more
complex lighting programs.

Figure 7. Street light control system test architecture

Light-controllers have minimal memory and do not persistently store their state in
the memory. They poll the central server to retrieve their designated state information.
This state information is stored in the array of bits, each bit denoting a specific parameter
value for the controller. Controller polls the server and the server responds whether it
has new state info for the controller. If this is the case, the information is provided with
the response. The server holds the state information for each controller. This information
can be manipulated by users via an Internet web user interface (UI). Figure 7 shows an
abstract view of test architecture. The test purpose is to test if when a user has logged
in and tries to turn on a light using the UI, the light will eventually get lit and that is
reported back with message lights on.

Figure 8 shows an extract of IUT model MIUT and generated tester MRPT . The test
adapters shown in Figure 7 interface symbolic interactions specified by channels in the
model with real interface of IUT. These channels are distinguished by name convention.
We use names in and out in the model and they are intercepted by dTron and executed
by adapters. Adapters translate synchronizations in the model in to actions against the
actual system and feed information back to the model.

Light_off
cl<=Ru

Light_on
cl<=Ru

Light_dimmed
cl<=Ru

Qsnt2

Logging_out
cl<=Ru

Select_ctlr
cl<=Ru

Qsnt1
cl <= TO

Logging_in
cl<=Ru

Idle

cl==TO

cl>=Rlout!
o6=T,
cl=0,t[1]

cl>=Rlout!
o5=T,
cl=0

i4in?
cl=0

i3in?
cl=0

cl>=Rlout!
o7=T,
cl=0

i5in?
cl=0

cl>=Rl
out!

o4=T,
i2=F

cl>=Rl
out!

o8=T,
i6=F, t[2]

i6
in?

cl=0

cl>=Rlout!
o3=T,
i2=F, cl=0

i2in?
cl=0

cl>=Rl
out!

o1=T,
i1=F,
cl=0

out!
o2=T,
i1=F

i1in?
cl=0

o3
out?

o3=F

o2
out?

o2=F

o8
out?

o8=F

gg4
in!

i6=T
o6
out?

o6=F

gg3
in!

i4=T

o4
out?

o4=F

gg2
in!

i2=T

o1
out?

o1=F

gg1
in!

i1=T

Figure 8. IUT and RPT models

Table 1. Tester input and output variables.

Input Output
Variable Meaning Variable Meaning

i1 login o1 login sucessful
i2 select controller (for setting) o2 login failed
i3 set light on o3 empty selection of controllers
i4 set light off o4 mode setting menu for chosen controllers
i5 dimming the light o5 status report “light on”
i6 logout o6 status report “light of”

o7 status report “light dimmed”
o8 log out completed

Table 2. Pre-execution correctness checks of tests.

Correctness condition Verification method

Output observability of MIUT Static analysis of test stimulus - response pairs
Connected control structure of MIUT Generating canonical tester and running query 1
Input enabledness of MIUT Transformation 1 (see Section 2.2)
Strong responsivness of MIUT Algorithm 1 (see Section 2.2)
Coverage correctness of MRPT Model checking query 2
Time-bound checks of tests Compaction procedure (Section 3.2), calculate 4

The tester is controlling that the test run will cover traps t[1] and t[2]. The inputs and
outputs of MIUT are explained in the table 1.

The timing constraints of IUT are specified in MIUT as follows:

• TO denotes the time-out to log off after being logged in if there is no activity over
UI during TO time units

• All actions controllable and observable over UI have pre-specified duration inter-
val [Rl,Ru]. If the responses to IUT inputs do not conform with given interval the
timing conformance test fail is reported. Implicitly [Rl,Ru] includes also param-
eter ∆. The estimate ∆̂ of ∆ is generated by dTron as the result of monitoring the
traffic logs at the planned test interface

Before running the executable test dTron performs a sequence of test model verifi-
cations. Table 2 illustrates the verification tasks available with current version of dTron.

6. Conclusion

We have proposed a MBT testing workflow that incorporates steps of IUT modelling, test
specification, generation, and execution that are alternating with their correctness verifi-
cation steps. The online testing approach of timed systems proposed relies on Reactive
Planning Tester (RPT) synthesis algorithm and distributed test execution environment
dTron. As shown in the paper the behaviour of generated RPT tester model does not set
extra timing constraints to controllable input/output of IUT and the on-line decisions of
the tester do not depend on the timing of IUT. dTron provides support to estimate time
delays in real test configuration and allows to take them into account while verifying the
test correctness properties with real environment delay constraints. This is a first prac-
tical step towards provably correct automated test generation for ∆-testing outlined as a
new MBT challenge in [4].

Acknowledgements

This research is partially supported by ELIKO and the European Union through the Eu-
ropean Regional Development Fund and by the Tiger University Program of the Infor-
mation Technology Foundation for Education.

References

[1] Tretmans, Jan. Test Generation with Inputs, Outputs and Repetitive Quiescence In: Software - Concepts
and Tools, 1996, 17 (3), 103 -120.

[2] Roberto Segala. Quiescence, Fairness, Testing, and the Notion of Implementation. In: Inf. Comput.,
1997, 138 (2), 194-210.

[3] Behrmann, G., David, A., Larsen, K. A tutorial on uppaal. In: Bernardo, M., Corradini, F. (ed.) Formal
Methods for the Design of Real-Time Systems. Springer, Berlin Heidelberg, 2004. 200 – 236.

[4] Alexandre David, Kim G. Larsen, Marius Mikucionis, Omer L. Nguena Timo, Antoine Rollet. Remote
Testing of Timed Specifications. Springer, 2013, 65-81. (Lecture Note in Computer Science, 8254).

[5] Vain, J., Raiend, K., Kull, A., and Ernits, J. Synthesis of test purpose directed reactive planning tester for
nondeterministic systems. In: 22nd IEEE/ACM Int. Conf. on Automated Software Engineering. ACM
Press, 2007, 363 – 372.

[6] Luo, G., von Bochmann, G., & Petrenko, A. Test selection based on communicating nondeterministic
finite-state machines using a generalized wp-method. IEEE Transactions in Software Engineering, 1994,
20 (2), 149 – 162.

[7] Hamon, G., de Moura, L., & Rushby, J. Generating efficient test sets with a model checker. In: SEFM
2004: Proceedings of the Software Engineering and Formal Methods, Second International Conference.
IEEE Computer Society, 2004, 261 – 270.

[8] Kääramees, M. A Symbolic Approach to Model-based Online Testing [dissertation]. Tallinn: TUT Press,
2012.

[9] Brinksma, Ed., Alderen, R., Lngerak, R., Lagemaat, J.d.v., Tretmans, J., A Formal approach to confor-
mance testing. 2nd Workshop on Protocol Test Systems. Berlin, October 1989.

[10] A.Anier, J.Vain. Model based continual planning and control for assistive robots. HealthInf 2012. Vil-
amoura, Portugal. 1-4 Feb, 2012.

[11] UPPAAL TRON. [WWW] http://people.cs.aau.dk/˜marius/tron/ (accessed 20.04.2014)
[12] DTRON home page. [WWW] http://dijkstra.cs.ttu.ee/˜aivo/dtron/ (accessed 20.04.2014)
[13] The spread toolkit. [WWW] http://spread.org/ (accessed 20.04.2014)

