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What is a prallel program?

 Parallel programs are compositions of sequential 
processes (threads).

 Processes are implemented as sequential programs 
(possibly non-deterministic).

 Processes communicate using 2 mechanisms:
 shared variables;
 message passing.



What makes verifying parallel 
programs so special?

 Observation:
 The behaviour of whole system does not depend only on the 

processes alone
 but interaction matters, i.e.

 the communication mechanism between processes 
 and the order (timing) of how the processes interact

 Thus, to verify a parallel program also communication
must be addressed explicitly by proof rules



Why interleaving of processes 
matters? An example

 What is the result of executing a simple  parallel program?
 Process 1:: X := 0; Y := X + 1;
 Process 2:: X := 1; Y := X + 2;

 Possible interleaving of execution steps:
 <P1.1, P1.2, P2.1, P2.2>  {X=1, Y=3}
 <P2.1, P2.2, P1.1, P1.2>  {X=0, Y=1}
 <P1.1, P2.1, P2.2, P2.1>  {X=1, Y=2}
 ...

 Due to the interleaving the number of possible final results 
grows exponentially in the length of processes.



General verification strategy

 We prefer compositional HL also when verifying parallel programs. 

 Processes are proven locally at first and whole system thereafter.

 To verify local correctness we need assertions about how 
communication affects processes locally (extra axioms about it).

 The communication assertions need to be generated and verified:

 the interference test (IFT) if communication via shared variables;

 the co-operation test (COOP) if communication via message passing.

 After local proofs are done using HL and communication axioms 
whole system is verified using parallel composition rule.



Parallel processes are generally non-
deterministic sequential programs

 We use E. Dijkstra’s Guarded Command Language (GCL) for 
programming non-deterministic sequential processes

 GCL includes non-deterministic counterparts of
 if - command and 
 while – command



Syntax of GCL

 Pvar – set of program variables:
 x ∈ Pvar

 VAL- set of possible values including natural numbers:
 a ∈VAL

 Arithmetic expressions:
 e ::= a | x  | (e1 + e2) | (e1 - e2) | (e1 ⋅ e2)

 Boolean expressions:
 b ::= e1 = e2 | e1 < e2 |  ¬b | b1 ∨ b2



GCL

 Commands:
C ::= 

x :=e 
| C1; C2

| if []ni=1 bi → Ci fi  

| do []ni=1 bi → Ci od 



GCL (continued)

 Assignment:
 x := e
 assigns value of vectore to the variable vectorx

 Sequential composition:
 C1 ; C2
 first execute C1 and continue with the execution of C2 if and 

when C1 terminates.



GCL (continued)

 Guarded command (symbolically):
if []ni=1 bi  → Ci  fi

 Each alternative is written (explicitly) in the program
if b1 → C1
[] b2 → C2
…  

[] bn → Cn
fi

 Meaning:
 abort if none of the guards bi evaluates to true;
 otherwise, nondeterministically select one of the bi that 

evaluates to true and execute the corresponding Ci .



GCL (continued)

 Iteration:

do []ni =1 bi → Ci od

 repeats execution of guarded command Ci as long as at least 
one of the guards bi evaluates to true;

 when none of the guards evaluates to true, the iteration 
terminates (acts like skip).



GCL inference rules

Guarded assignment rule: 
⊢ P ∧ b ⇒ Q[e/x]

⊢{P} 〈b → x:=e〉 {Q}

General guarded command rule:
⊢ ∀i ∈{1, … , n}: {P ∧ bi } Ci {Q }
⊢ {P} if []ni=1 bi → Ci fi {Q}



GCL inference rules (continuation)

 Non-deterministic loop

⊢P ⇒ I ⊢ ∀i=1,n : {I ∧ bi} Si {I}  ⊢ (I ∧¬ bG ) ⇒ Q
⊢ {P} do {I}  [n

i=1 bi → Si ] od {Q}

where   bG ≅ \/n
i=1 bi

I - invariant



Parallel programming language 
with shared variables

Command



Parallel programming language 
with shared variables

commands



Execution model: atomicity 
and interleaving

What is the value of x after the execution of the following program?
(x := 0; x := x +2) || (x := 1; x := x +3) 

Interleaving semantics: only one atomic action of one of the processes that is not 
in the  waiting state is executed at a time. It is called interleaving of atomic actions.

It can be either 2, 4, 5 or 6.



Interference of processes
 Annotation specifies the constraint what program variables have to satisfy 

when the execution has reached the place/state where the annotation is 
written.

 It is difficult to locate the place for annotations in parallel programs because 
the global annotations should take into account all possible interleavings.

 It is not enough to prove the correcness of processes locally. 
 Local annotations suffice only if we can prove that other processes do not 

violate the validity of assertions in the process.



Interference freedom

Definition: 
The annotated triples {pi} ASi {qi} i =1, … , n are interference free iff for 
all i, j ∈ {1, … , n }, i ≠ j, and for every assertion r in any {pj} ASj {qj} we 
have that if  Si is either a command

x := e

or  
await b then S0 end 

with precondition ri in parallel process {pi} ASi {qi} then 
{ri /\ r} Si {r}.



SVL parallel composition rule

A1⊢{P1} S1 {Q1}   A2⊢{P2} S2 {Q2}   ⊢P⇒P1 ∧ P2 ⊢Q1∧Q2⇒Q     IFT(S1||S2)
⊢ {P}[{P1} S1 {Q1} || {P2} S2 {Q2}] {Q}

IFT(S1||S2) – processes S1 and S2 are Interference Free
IFT - Interference Freedom  Test



Interference freedom test (IFT):
 Let S1 || S2 . 
 For each pair of annotated assignments {P1} V1:=E1 {Q1} and 

{P2} V2:=E2 {Q2} where {P1} V1:=E1 {Q1} ∈ A(S1)  and {P2} V2:=E2 {Q2}∈
A(S2), interference test consists of 4 proof obligations (where A(S) denotes 
annotated program S):
 S1 does not violate the local precondition P2 of S2:

{P1 ∧ P2} V1 := E1 {P2}
 S1 does not violate the local postcondition Q2 of S2:

{P1 ∧ Q2} V1:= E1 {Q2}
 S2 does not violate the local precondition P1 of S1:

{P2 ∧ P1} V2:= E2 {P1}
 S2 does not violate the local postcondition Q1 of S1:

{P2 ∧ Q1} V2:=E2 {Q1}



Example
Prove that { x = 0 } x := x + 1   ||   x := x + 2   { x = 3 }

{x=0 ∨ x=2}

{x = 0 ∨ x = 1}

{x=1 ∨ x=3}

{x = 2 ∨ x = 3}

{ x = 0 } x := x + 1   ||   x := x + 2   { x = 3 }

Add the annotations:

The global precondition implies the local preconditions of the processes and 
the local postconditions imply the global postcondition:

˫  (x = 0) ⇒ (x = 0 ∨ x = 2) ∧ (x = 0 ∨ x = 1) 
˫ (x = 1 ∨ x = 3) ∧ (x = 2 ∨ x = 3) ⇒ ( x = 3)

Each process has local specification:
˫ {x = 0 ∨ x = 2} x := x + 1 {x = 1 ∨ x = 3} 
˫ {x = 0 ∨ x = 1} x := x + 2 {x = 2 ∨ x = 3}



Example: interference test
{x= 0 ∨ x = 2}

{x = 0 ∨ x = 1}

{x = 1 ∨ x = 3}

{x = 2 ∨ x = 3}

{ x = 0 } x := x + 1   ||   x := x + 2   { x = 3 }

P1 does not interfere to P2 local precondition
˫ {(x = 0 ∨ x = 2) ∧ (x = 0 ∨ x = 1)} x := x + 1{ x = 0 ∨ x = 1}

P1 does not interfere to P2 local postcondition
˫ {(x = 0 ∨ x = 2) ∧ (x = 2 ∨ x = 3)} x := x + 1{ x = 2 ∨ x = 3}

P2 does not interfere to P1 local precondition
˫ {(x = 0 ∨ x = 1) ∧ (x = 0 ∨ x = 2)} x := x + 2{ x = 0 ∨ x = 2}

P2 does not interfere to P1 local postcondition
˫ {(x = 0 ∨ x = 1) ∧ (x = 1 ∨ x = 3)} x := x + 2{ x = 1 ∨ x = 3}



A problem
We cannot prove 

˫ { x = 0 } x := x + 1   ||   x := x + 1 { x = 2 }
because VCs 

˫{(x = 0 ∨ x = 1)} x := x + 1{ x = 1 ∨ x = 2}
˫{(x = 0 ∨ x = 1)} x := x + 1{ x = 1 ∨ x = 2}

are not interference free, i.e:
{(x = 0 ∨ x = 1) ∧ (x = 0 ∨ x = 1)} x := x + 1{ x = 0 ∨ x = 1}

and the conjunction of local postconditions does no imply postcondition
{ x = 1 ∨ x = 2} ∧ { x = 1 ∨ x = 2} ⇒ { x = 2 }

˫

˫



Intermediate remarks

 Proving the properties of parallel programs is computationally hard
 There is an exponential number of verification conditions (VC) one for 

every command in all processes for every assignment
 Given proof method is not compositional for parallel composition
 Not possible to verify ||-composition of processes knowing only the pre-

and postconditions of the local processes. 
 If the specification is proved for the whole parallel program then it 

is possible to compose it sequentially to other programs looking 
only at pre- and postcondition.



Message passing parallel 
programs

We have studied the formal (syntactic and) verification of
- non-deterministic programs – generalization of deterministic 

sequential programs;
- parallel programs with shared variables - an abstraction of multi-

threaded programs (in multiprocessor computer).

We will look next parallel programs with message passing - an 
abstraction of distributed (networked) programs.



Communication primitives of parallel 
programs
 We have communication primitives C!e and C?x sending a 

value to channel C and reading the value from C. 
Notations
C ∈ CHANNEL;
e – arithmetic expression on the local variables of the process;
x – local variable;
C!e – the value of an expression e is sent to channel C;
C?x – a value is read from channel C and assigned to variable x.

Synchrony!
Commands C!e and C?x are executed synchronously.



Parallel programs with message 
passing

Command

if []ni=1 bi → Si fi  []ni=1 bi → Si
do []ni=1 bi → Si od  ([]ni=1 bi → Si)

We use here sligthly different notation



Communication commands

command
command

command
command

command



Parallel programs with message 
passing

commands



Syntactic restrictions

Parallel processes do not share program variables!



Recall: proof method for parallel 
programs with shared variables

 The method of Owicki and Gries
 First, a local correcness proof is given for each process
 a consitency check - interference test is applied to the local 

proofs. 
 Similar two-stage method is applicable to parallel processes with 

message passing, but the cooperation tests are verified instead 
of interference tests



DML parallel composition

A1 ⊢ {P1}S1{Q1}   A2 ⊢ {P2} S2 {Q2}   ⊢P ⇒ P1 ∧ P2 ⊢Q1 ∧ Q2 ⇒ Q Coop(A1 A2)
⊢ {P}[{P1} S1 {Q1} || {P2}S2 {Q2}]{Q}

non-deterministic choice
∀i= 1, l:  A i ⊢ {P} Si {Q},    

A ⊢{P}  [l
i=1 Si]  {Q} A = def ∪l

i=1 A i



Cooperation test Coop(A1 A2)

Coop(A1 A2) establishes the validity of sets of axioms A1 and A2 about the 
communication correctness:
Assuming: 
 there is a matching pair of communication operations over channel C, i.e. 
C! E and C?v where E is an expression and v is a variable, the matching pair has local 
pre- and post-conditions: 
 Si: ... {Pi'} C!E {Qi'}....   and 
 Sj: ... {Pj"} C?v {Qj"}...    respectively,
then the test Coop() for this pair means proving the validity of tripple 
 |− {Pi' ∧ Pj"} v:= E {Qi' ∧ Qj"}. (*)

When the tripple (*) is proved correct then {Pi'} C!E {Qi'} and {Pj"} C?v {Qj"} are 
treated respectively as axioms ai

k ∈ Ai and aj
k ∈ Aj in the local proofs of processes Si

and Sj where these tripples occur.



Example

local annotations

cooperation tests

parallel composition



Example of using auxiliary variables 
(for identifying matching pairs)



Assignment
Show that 

{true} S1 || S2 || S3 {x = u}, 
where
S1 ≡ C!x, 
S2 ≡ C?y; D!y
S3 ≡ D?u



Assignment
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