
Exercises

Exercise 1. (Reimo Palm) How many ways to ascend a ladder with n rungs if on each step we
may advance by 1 or 2 rungs?

Solution. Let An be the number of ways to ascend an n-rung ladder.
If we go 1 rung on the first step, we need to climb the remaining n− 1 rungs with the following

steps, and there are An−1 ways to do that. If we go 2 rungs on the first step, we need to climb
the remaining n− 2 rungs with the following steps, and there are An−2 ways for that. Thus, from
the rule of sum we have An = An−1 +An−2, just like in the Fibonacci sequence, and so we already

know the solution must have the form An = c1q
n
1 + c2q

n
2 , where q1 = 1+

√
5

2 and q2 = 1−
√
5

2 .
The boundary conditions are A1 = 1 (we always have to ascend a 1-rung ladder in a single

step) and A2 = 2 (we can ascend a 2-rung ladder in one step of two rungs or two steps of one rung
each). We could construct and solve the equations for c1 and c2 from scratch, but as a shortcut
we can also notice that A1 = F2 and A2 = F3. As any second-order linear recurrence is uniquely
determined by the recurrent rule and two consecutive elements, we have An = Fn+1.

This also gives A0 = 1, which may be interpreted as there being just one way for ascending a
0-rung ladder (do nothing), though the notion of a 0-rung ladder is admittedly somewhat silly.

Exercise 2. (Reimo Palm) How many ways to cover a 2 × n rectangle with 2 × 1 domino tiles so
that each square of the rectangle is covered by exactly one square of a tile?

Solution. Let Dn be the number of ways a 2 × n rectangle can be covered.
Consider now the top-left corner of a rectangle. It may be covered by the top half of a tile

oriented vertically (on the left in the figure below). Then a 2 × (n − 1) rectangle remains to be
covered, and there are Dn−1 ways to do that. Alternatively, the top-left corner may be covered by
the left half of a tile oriented horizontally. Then the only possibility to cover the bottom-left corner
is with another tile oriented horizontally (on the right in the figure), leaving a 2× (n− 2) rectangle
still to be covered, with Dn−2 ways to do that. Therefore, the recurrent rule is Dn = Dn−1 +Dn−2.

To obtain boundary conditions, we note that there is just one way to cover a 2 × 1 rectangle (on
the left in the figure below) and two ways to cover a 2×2 rectangle (in the middle and on the right
on the figure). Therefore D1 = 1 and D2 = 2.

Since both the recurrent rule and the boundary conditions are the same as in the previous exercise,
the two sequences must be the same, and we have Dn = An = Fn+1.
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Exercise 3. (Reimo Palm) How many n-letter strings consisting of letters A and B, where there
are never two consequtive A’s?

Solution. Let Sn be the number of n-letter strings of the required form.
If the first letter of an n-letter string is B, the (n−1)-letter sufix may be any string of the required

form. If the first letter is A, the second one has to be B (else we would have two consequtive A’s)
and the (n− 2)-letter sufix may be any string of the required form. So we have Sn = Sn−1 + Sn−2
once again.

The boundary conditions are S0 = 1 (there’s one empty string and it satisfies the requirement)
and S1 = 2 (the one-letter strings A and B both satisfy the requirement).

Therefore we have Sn = Fn+2.

Exercise 4. (Reimo Palm) How many n-letter strings consisting of letters A, B, C, and D, where
there’s an odd number of A’s?

Solution. Let Sn be the number of n-letter strings of the required form.
If the first letter of an n-letter string is A, then the remaining n − 1 letters must contain an

even number of A’s. We can note that when we take all strings and remove those with odd number
of A’s, exactly the ones with even number of A’s remain. There are 4n−1 tuples of length n− 1 in
the 4-element letter set we have, so the number of (n− 1)-letter strings containing an even number
of A’s must be 4n−1 − Sn−1 and each of them can be prepended with an A to obtain an n-letter
string containing an odd number od A’s.

If the first letter is B, C, or D, the remaining n− 1 letters must contain an odd number of A’s.
By the rule of product, we have 3Sn−1 ways to construct the n-letter string starting with one of
those three letters. Using the rule of sum to combine this with the result for strings starting with
an A, we obtain the recurrence Sn = 4n−1 − Sn−1 + 3Sn−1 = 2Sn−1 + 4n−1.

For boundary condition we can use either S0 = 0 (the one and only empty string has an even
number of A’s, so the number of 0-length strings with odd number of A’s is 0) or S1 = 1 (the only
1-letter string with odd number of A’s is A itself).

Picking the first boundary condition, we obtain the non-homogeneous first-order linear recur-
rence

S0 = 0,

Sn+1 = 2Sn + 4n.

Following the 3-step method for solving non-homogeneus recurrences:

• The corresponding homogeneus recurrence is S′n+1 = 2S′n, whose characteristic equation
q − 2 = 0 yields q = 2 and therefore the general solution of the homogeneus recurrence is

S′n = cqn = c2n.

• To obtain a particular solution for the non-homogeneus recurrence, we look among expressions
generalizing the non-homogeneus member of the recurrent rule: S′′n = α4n. Substituting into
the recurrent rule, we obtain α4n+1 = 2α4n+4n. Dividing both sides of the equation by 4n, we
get 4α = 2α+1, which gives α = 1

2 and therefore a particular solution of the non-homogeneus
recurrence is

S′′n =
1

2
4n.
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• Combining the previous two results, we get that the general solution must have the form
Sn = S′n + S′′n = c2n + 1

24n. Looking at the boundary condition, we have S0 = c20 + 1
240 =

c+ 1
2 = 0, from which we obtain c = −1

2 , which in turn gives us the final result

Sn = −1

2
2n +

1

2
4n =

1

2
(4n − 2n).

Exercise 5. (Edouard Lucas) Tower of Hanoi is a puzzle consisting of three pegs and n distinct-
sized disks initially stacked in the order of sizes on the leftmost peg. The goal is to move all disks to
the rightmost peg obeying the additional constraints that we may only move one disk at a time and
may never place a larger disk on top of a smaller one. The middle peg can be used as a temporary
holding place. How many steps are needed to solve the puzzle for n disks?

Solution. In this problem, we need to first design a solution strategy, then convince ourselves that
it is indeed optimal, and only then can count the steps.

For n = 1, the optimal solution is quite obvious: we just take the single disk and move it from
the leftmost peg to the rightmost one in 1 step. So, the number of steps H1 = 1 in this case.

For n > 1, we can use the following process: first we move the n− 1 smaller disks to the middle
peg in Hn−1 steps, then the largest disk from the leftmost peg to the rightmost one in 1 step, and
then the n− 1 smaller disks from the middle peg to the rightmost one in another Hn−1 steps.

To see that this is the optimal strategy, let’s consider the largest disk. In order to be able to
move it at all, we need to get the n−1 smaller disks away from the leftmost peg, so we must spend
at least Hn−1 steps before we can move the largest disk. Symmetrically, after we have placed the
largest disk to the rightmost peg, we must spend at least Hn−1 steps to get the smaller disks on top
of it. As our strategy achieves these lower bounds, it is indeed optimal, and so we have obtained
the following recurrence for the number of steps required:

H1 = 1,

Hn+1 = 2Hn + 1.

Following the 3-step method again:

• The corresponding homogeneus recurrence is H ′n+1 = 2H ′n, whose characteristic equation
q − 2 = 0 yields q = 2 and therefore the general solution of the homogeneus recurrence is

H ′n = c2n.

• Generalizing the non-homogeneus member to H ′′n = α and substituting into the recurrent
rule, we obtain α = 2α+ 1, from which we have α = −1 and therefore

H ′′n = −1.

• Then the general solution must have the form Hn = c2n−1 and from the boundary condition,
we have H1 = c21 − 1 = 2c− 1 = 1, from which we obtain c = 1, which in turn gives us the
final result

Hn = 2n − 1.
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