Data mining: Practice 1

S. Nõmm
${ }^{1}$ Department of Computer Science, Tallinn University of Technology

February 2, 2016

R and R studio

- Check if your computer is running latest version of Java
- You may download R from https://www.r-project.org/
- It is advisable to download R studio as well (makes your life easer) https://www.rstudio.com/products/rstudio/.
- once R and Rstudio are installed you may try to follow Practice 1 from a course wiki download files with R scripts
- Demo1_correlation_regression_otliers.R
- PCA_1.R
- and data files
- demoSetD2.zip (unzip the file to get demoSetD2.xls
- variablesXYZ

Exercise 1

- Open Demo1_correlation_regression_otliers.R. This script demonstrates:
- Import of the data from .xls file: On this step you will need to add "rJava" and "xlsx". In order to install the packages type in console install.packages("packageName"). Once packages are installed in your script add library (xl lsx) this activates the library.
setD<-read.xlsx("C:/Path/fname", 1) reads numeric data from the Sheet 1 into the numeric array setD.
- Drawing simple plots: plot (setD[,2], setD[,1]) plots scatter plot whereas the second column of the matrix setD is treated as independent variable and the first column as dependent variable. Note! notation (setD [, 2]) indicates the second column.

Exercise 1 (continued)

- Computing some measures of statistics: corCoef<-cor (setD[,2], setD[,1]) computes linear correlation coefficient between the first and second columns of the matrix setD.
- Finding coefficients of the linear regression model:
model1<-lm(trainingSetD[,1]~trainingSetD [, 2]) builds the model where trainingSetD[,1] is the dependent variable and trainingSetD [,2] independent. C=summary ((model1)\$coefficients) extracts the values of the coefficient and intercept.
- Finally model validation is performed.
- Each line of the file Demo1_correlation_regression_otliers.R is supplied with explanation or comment.

Exercise 2

This exercise illustrates computations necessary to perform PCA (principal component analysis). The data is in native " R " fromat variablesXYZ and the script is PCA_1.R.

- On the first step we celar the environment as usually.
- Loading native format does not require any external libraries load(file="C:/Path/fname")
- We will use some libraries for 3D plotting "sctterplot3D", "car" and "rgl". Instal those packages the same way as in previous example.
- "R" possesses some useful functions like "length" which provide you with the possibility to determine the length of the vector if necessary
- Commented part of the file allows you to position and draw some histograms.

Exercise 2 (continued)

- Followed by computations of correlation coefficients (see previous example) and standard deviations sx<-sd (x) computs standard deviation of x
- In many cases it is necessary to center the data (subtract mean).
- mean_x<-mean (x) computes the mean value of x the you may subtract it
- $\mathrm{D}<-\operatorname{cbind}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ combines vectors x, y and z into the matrix \mathcal{D}
- cov_D<-cov(D) computes covariance matrix of \mathcal{D}
- eig_cov_D<-eigen(cov_D) computes eigenvalues and eigenvectors
- rotated_D<-D\%*\%eig_cov_D\$vectors computes \mathcal{D}^{\prime}

Exercise 2 (continued)

- You may now analyze covariances between the columns of matrix \mathcal{D} and check variances
- open3d opens new window for 3D plot
- scatter3d plots 3D scatter.

