
Homework 2 – Number Theory and Counting

Exercise 1. Calculate the greatest common divisors of numbers shown below and express this
value in the form of the Bézout identity.

(a) gcd(12, 17) (b) gcd(27, 12) (c) gcd(65, 5) (d) gcd(10, 27)

Solution.

(a) gcd(12, 17) = (−7) · 12 + 5 · 17 = 1

(b) gcd(27, 12) = 1 · 27 + (−2) · 12 = 3

(c) gcd(65, 5) = 0 · 65 + 1 · 5 = 5

(d) gcd(10, 27) = (−8) · 10 + 3 · 27 = 1

Exercise 2. Answer the questions below.

(a) Which integers are congruent to 3 mod 7?

(b) List integers in the equivalence class of 5 mod 10?

Solution.

(a) Integers congruent to 3 mod 7 are:

[3] = {. . . ,−18,−11,−4, 3, 10, 17, 24, . . .} .

(b) The equivalence class of 5 mod 10 is

[5] = {. . . ,−35,−25,−15,−5, 5, 15, 25, 35, . . .} .

Exercise 3. Calculate

(a) 3 mod 5 (b) 5 mod 3 (c) 12 mod 3 (d) 7 mod 4

(e) − 5 mod 8 (f) − 4 mod 11 (g) 6−1 mod 7 (h) 2−1 mod 6

Solution.

(a) 3 (b) 2 (c) 0 (d) 3

(e) 3 (f) 7 (g) 6 (h) none exists

In (g), one can see that 6−1 = 6 (mod 7), since 6 · 6 = 36 ≡ 1 (mod 7). In (h), one can see that 2
is not invertible modulo 6, since gcd(2, 6) = 2 6= 1.

Exercise 4. Solve for x. If the equation is not solvable, provide a justification for it.

(a) x+ 12 ≡ 7 (mod 15) (b) 4x ≡ 3 (mod 7)

(c) 15x+ 12 ≡ 21 (mod 27) (d) 8x ≡ 3 (mod 28)
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Solution.

(a) Subtracting 12 from both sides of the equation we obtain the solution x ≡ 10 (mod 15)

(b) Multiplying both sides of the equation by 2, we obtain the solution x ≡ 6 (mod 7)

(c) Subtracting 12 from both sides of the equation we get 15x ≡ 9 (mod 27). Since gcd(15, 27) =
3 and 3|9, then by dividing all three parameters of the equation by 3, we obtain the reduced
form 5x ≡ 3 (mod 9). Multiplying both sides of this equation by 2, we get the solution x ≡ 6
(mod 9). To verify, observe that 15 · 6 + 12 = 102 ≡ 21 (mod 27).

(d) Since gcd(8, 28) = 4, but 3 6 |4, this equation is not solvable.

Exercise 5. Solve for x. If the system is not solvable, provide a justification for it.

(a)

{
5a+ b ≡ 0 (mod 8)

2a+ b ≡ 1 (mod 8)
(b)

{
3a+ b ≡ 6 (mod 7)

6a+ b ≡ 4 (mod 7)

(c)

{
5a+ b ≡ 4 (mod 6)

3a+ b ≡ 5 (mod 6)
(d)

{
9a+ b ≡ 1 (mod 10)

5a+ b ≡ 5 (mod 10)

Solution.

(a) Subtracting the second equation from the first one, we get 3a ≡ 7 (mod 8). Multiplying
both sides of the equation by 3, we get a ≡ 5 (mod 8). From the first equation, we see that
b = −5a = −25 ≡ 7 (mod 8). Hence, a ≡ 5 (mod 8), b ≡ 7 (mod 8).

(b) Subtracting the first equation from the second, we get 3a ≡ 5 (mod 7). Multiplying both
sides of the equation by 5, we get a ≡ 4 (mod 7). From the first equation, we get b = 6−3a =
−6 ≡ 1 (mod 7). Hence, a ≡ 4 (mod 7), b ≡ 1 (mod 7).

(c) Subtracting the second equation from the first one, we get 2a ≡ 5 (mod 6). Since gcd(2, 6) = 2
and 2 6 |5, the system has no solutions.

(d) Subtracting the second equation from the first one, we get 4a ≡ 6 (mod 10). Since gcd(4, 10) =
2 and 2|6, by dividing the equation by 2, we get 2a ≡ 3 (mod 5). Multiplying both sides of the
equation by 3, we get a ≡ 4 (mod 5). From the first equation, we have b = 1− 9a = −35 ≡ 5
(mod 10). Hence, a ≡ 4 (mod 10), b ≡ 5 (mod 10).

Exercise 6. Solve for x.

(a)

{
x ≡ 2 (mod 3)

x ≡ 4 (mod 5)
(b)

{
x ≡ 3 (mod 4)

x ≡ 7 (mod 9)

(c)


x ≡ 3 (mod 5)

x ≡ 5 (mod 7)

x ≡ 6 (mod 8)

(d)


x ≡ 6 (mod 10)

x ≡ 3 (mod 13)

x ≡ 15 (mod 19)

Solution.
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(a) By the Bézout identity, gcd(3, 5) = 2 ·3+(−1) ·5 = 1. Therefore, x ≡ 4 ·3 ·2+2 · (−1) ·5 ≡ 14
(mod 15).

(b) By the Bézout identity, gcd(4, 9) = (−2) ·4+1 ·9 = 1, and therefore x ≡ 7 ·4 · (−2)+3 ·1 ·9 =
−29 ≡ 7 (mod 36).

(c) N = 5·7·8 = 280, N1 = 280
5 = 56, N2 = 280

7 = 40, N3 = 280
8 = 35, gcd(56, 5) = 1·56−11·5 = 1,

gcd(40, 7) = 3 ·40−17 ·7 = 1, gcd(35, 8) = 3 ·35−13 ·8 = 1, x ≡ 3 ·1 ·56+5 ·3 ·40+6 ·3 ·35 =
1398 ≡ 278 (mod 280).

(d) N = 10 · 13 · 19 = 2470, N1 = 2470
10 = 247, N2 = 2470

13 = 190, N3 = 2470
19 = 130, gcd(247, 10) =

3 · 247− 74 · 10 = 1, gcd(190, 13) = 5 · 190− 73 · 13 = 1, gcd(130, 19) = 6 · 130− 41 · 19 = 1,
x ≡ 6 · 3 · 247 + 3 · 5 · 190 + 15 · 6 · 130 = 18996 ≡ 1706 (mod 2470).

Exercise 7. Calculate the value of the Euler’s totient function ϕ(n).

(a) ϕ(11) (b) ϕ(99)

(c) ϕ(20) (d) ϕ(540)

Solution.

(a) Since 11 is a prime number, ϕ(11) = 10.

(b) The prime factorization of 99 is 99 = 32 · 11, hence ϕ(99) = 99 ·
(
1− 1

3

)
·
(
1− 1

11

)
= 60.

(c) The prime factorization of 20 is 20 = 22 · 5, hence ϕ(20) = 20 ·
(
1− 1

2

)
·
(
1− 1

5

)
= 8.

(d) 540 = 22 · 33 · 5, hence ϕ(540) = 540 ·
(
1− 1

2

)
·
(
1− 1

3

)
·
(
1− 1

5

)
= 144.

Exercise 8. (Reimo Palm) Andy has 5 toy ships and 6 toy planes. He wants to make an exhibition
showing 3 models of one kind and 4 models of the other kind. How many ways there are to pick
the exhibition set from his collection?

Solution. The exhibition may consist of either 3 ships and 4 planes or 4 ships and 3 planes, and
thus there are

(
5
3

)
·
(
6
4

)
+
(
5
4

)
·
(
6
3

)
= 10 · 15 + 5 · 20 = 250 possible sets.

Exercise 9. How many ways there are to line up n male and n − 1 female students for a group
photo so that in the resulting arrangement no two males stand side by side?

Solution. To avoid placing two males next to each other, the only option is to alternate males and
females, starting from a male. There are n! ways to arrange the n males among the n odd-numbered
positions, and (n− 1)! ways to arrange the n− 1 females among the n− 1 even-numbered positions
in the line. Any arrangement of males can be combined with any arrangement of females, so we
have n!(n− 1)! possibilities in total.

Exercise 10. Solve the recurrence An+2 = An+1 + 2An + 1, when A0 = 0, A1 = 2.

Solution. We can obtain the solution with the 3-step method shown in the lecture:

• The corresponding homogeneus recurrence is A′n+2 = A′n+1 +2A′n. Its characteristic equation
q2 − q − 2 = 0 gives q1 = 2, q2 = −1. Thus the general solution is A′n = c12

n + c2(−1)n.
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• Generalizing the non-homogeneus member, we will look for particular solutions of the form
A′′n = α · n + β. Substituting into the recurrent rule, we get (α · (n + 2) + β) = (α · (n +
1) + β) + 2(α · n + β) + 1. Collecting like terms, we get 2α · n + 2β − α + 1 = 0. Since this
has to hold for all n, we have 2α = 0, or α = 0, and 2β − α + 1 = 0, or β = −1

2 . Thus
A′′n = 0 · n− 1

2 = −1
2 .

• The solution for the original recurrence must then be of the form An = c12
n + c2(−1)n − 1

2 .
Looking at the boundary conditions, we have A0 = c1 + c2− 1

2 = 0 and A1 = 2c1− c2− 1
2 = 2

giving c1 = 1, c2 = −1
2 , for the solution

An = 1 · 2n + (−1

2
) · (−1)n − 1

2
= 2n − (−1)n + 1

2
.

Alternatively, we could compute a few more elements (A2 = A1 + 2A0 + 1 = 2 + 2 · 0 + 1 = 3,
A3 = A2 + 2A1 + 1 = 8, A4 = 15, A5 = 32, . . . ), postulate the hypothesis

An =

{
2n if n is odd,

2n − 1 if n is even,

and then prove it by induction (which will be covered later in the course).
For the base case, we can immediately verify 20 − 1 = 1 − 1 = 0 = A0, 21 = 2 = A2. For the

induction step, let’s first consider An+2 for even n. Then n + 1 is odd and n + 2 is even, and we
have An+2 = An+1 + 2An + 1 = 2n+1 + 2(2n− 1) + 1 = 2n+1 + 2 · 2n− 2 + 1 = 2n+2− 1, as it should
be for even n+2. Considering An+2 for odd n, we get similarly An+2 = 2n+1−1+2 ·2n +1 = 2n+2,
which completes the proof that the hypothesis holds for all n ≥ 0.

Finally, note that the two formulae are really the same, as the term (−1)n+1
2 is 0 when n is odd

and 1 when n is even.
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