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Influence of the hyper parameters

I Distance function and number of clusters.

I Distance between two sets.

I Density and neighbourhood defining parameters.

An open question: how to validate clustering results?



Different approaches to clustering

I Representative-Based Algorithms
I The k-Means Algorithm.
I The Kernel k-Means Algorithm
I The k-Medians Algorithm
I The k-Medoids Algorithm

I Hierarchical Clustering Algorithms
I Bottom-Up Agglomerative Methods
I Top-Down Divisive Methods

I Density and grid based techniques
I Grid based clustering
I Density based clustering

I Probabilistic clustering



Cluster Validation

I Internal Cluster Validation
I Sum of square distances to centroids;
I Intracluster to intercluster distance ratio;
I Silhouette coefficient;
I Probabilistic measure;

I External Cluster Validation, used when ground truth
information is available.

I Confusion matrix;
I Cluster purity;
I Gini index;



Bottom-Up Agglomerative Methods

Hyper parameters: distance between two clusters

I Step 1: Consider each point of the data set as the cluster

I Step 2: Compute n× n matrix representing distances
between each pair of clusters.

I Step 3: Select two closest clusters and merge them

I Step 3: If convergence criterion not satisfied return to Step 2



Group-Based Statistics

I Best (single) linkage

I Worst (complete) linkage

I Group-average linkage

I Closest centroid

I Variance based criterion

I Ward’s method



Grid - based methods

Hyper parameters: range r defines the grid, τ defines the liminal
density

I Step 1: Discretize each dimension of the dataset into the r
ranges

I Step 2: Find the cells with the density level higher or equal to
τ

I Step 3: Define clusters as the sets of adjacent cells



Density - based methods

Definition
Data point d is defined as a core point, if for each density τ there
exists positive ετ such that ετ -neighborhood of d contains at least
τ data points.

Definition
A data point d is said to be a border point, if for each density τ
there exists positive ετ such that ετ -neighborhood of d contains at
least two data points whereas one of them is core point.

Definition
A data point that is neither a core point nor a border point is
defined as a noise point.



DBSCAN

I Determine core, border and noise points of D at level (ε, τ);

I Create graph in which core points are connected if they are
within Eps of one another;

I Determine connected components in graph;

I Assign each border point to connected component with which
it is best connected;

I Return points in each connected component as a cluster;



Cluster Purity

I Let mij represent the number of data points from class
(ground-truth cluster) i that are mapped to (algorithm determined)
cluster j.

I Denote number of data points in true cluster i are by Ni,the
number of data points in algorithm-determined cluster j by Mj .

Ni =

kd∑
j=1

mij ; Mj =

kt∑
i=1

mij ;

I For a given algorithm-determined cluster j, the number of data
points Pj in its dominant class is: Pj = max

i
mij .

I Purity index is defined

Pa =

kd∑
j=1

Pj

kd∑
j=1

Mj

.



Gini index

I Gini index for algorithm determined cluster j is defined:

Gj = 1−
kt∑
i=1

(
mij

Mj

)2

.

I Average Gini index is defined as follows:

G =

kd∑
j=1

GjMj

kd∑
j=1

Mj

.



Mixture models

Let zi = {1, . . . ,K}, - discrete latent states.

p(zi) = Cat(π)

L(xi | zi = k) = pk(xi)

Overall model is known as Mixture model (we are mixing together
K base distributions)

p(xi | θ) =

K∑
k=1

πkpk(xi | θ)

where mixed weights πk satisfy 0 ≤ πk ≤ 1 and
∑K

k=1 πk = 1



EM-algorithm

Let us consider K-Means from the probabilistic point of view.

I (E-step) Each data point of the set D has a probability
belonging to cluster j, which is proportional to the scaled and
exponentiated Euclidean distance to each representative Yj .
In the k-means algorithm, this is done in a ”hard” way, by
choosing the smallest Euclidean distance to the representative
of Yj .

I (M-step) The center Yj is the weighted mean over all the data
points where the weight is defined by the probability of
assignment to cluster j. The hard version of this is used in
k-means, where each data point is either assigned to a cluster
or not assigned to a cluster (i.e., 0-1 probabilities).



EM-algorithm

Assumption: the data was generated from a mixture of k
distributions with probability distributions G1 . . .Gk. Each
distribution Gi represents a cluster and is also referred to as a
mixture component.

I (E-Step) Given the current value of the parameters in ,
estimate the posterior probability P (Gi|Xj ,Θ) of the
component Gi having been selected in the generative process,
given that we have observed data point Xj . The quantity
P (Gi|Xj ,Θ) is also the soft cluster assignment probability
that we are trying to estimate. This step is executed for each
data point Xj and mixture component Gi.

I (M-Step) Given the current probabilities of assignments of
data points to clusters, use the maximum likelihood approach
to determine the values of all the parameters in Θ that
maximize the log-likelihood fit on the basis of current
assignments.



Parameter estimation for Gaussian Mixture Models

I The goal is to estimate parameters:
π,µk,Σk, k = 1, . . . ,K

I The log-likelihood function of GMM is

log p
(
X | π,µ,Σ

)
=

n∑
i=1

log
( K∑
k=1

πkN (xi | µk,Σk)
)

I Possible problems:
I Unidentifiability: K-component mixture has K! possible

labeling therefore there is no unique maximal likelihood
estimate and in turn no unique maximum a posterior estimate.

I Summation inside the logarithm ... .



Observe the following

I The knowledge of component parameters and mixing
proportions allows to compute the probability that the
component k responsible 1 for the i-th point
p(zi = k | xi,π,µ,Σ).

I The knowledge of the responsibilities allows to compute the
estimates for the mixing coefficients πk.

I The knowledge of responsibilities and mixing coefficients
allows to compute the estimates for component means µk and
variances Σk

This leads the idea of two step iterative algorithm:

I Step E: Inferring the missing values given the parameters.

I Step M: Optimization of the parameters given the ”filled
data”.

1Responsibility of the cluster k for point i is the posterior probability that
point i belongs to cluster k, p(zi = k | xi,θ)



Expectation - Maximization

Expectation - Maximization (EM):

I Let xi denote the visible observed values in case i, and zi -
hidden or missing variables. The goal is to maximize the log
likelihood of the observed data:

L(θ) =

N∑
i=1

log p(xi | θ) =

N∑
i=1

log
[∑
zi

p(xi, zi | θ)
]

I Way around the problem with the sum under the log. Define
the complete data log likelihood as is follows

Lc(θ) =

N∑
i=1

log p(xi, zi | θ)

Note, that this could not be computed due to the fact that zi
are unknown.



EM

I Define expected complete data log likelihood:

Q(θ, θt−1) = E[lc(θ) | D, θt−1].

here t is the iteration number. Q will be referred as auxiliary
function.

I E step computes the latent values needed to compute
Q(θ | θt−1).

I M step optimizes Q with respect to θ.

θt = arg max
θ
Q(θ, θt−1)



EM -algorithm

I Auxiliary function:

Q(θ, θt−1) =
∑
i

∑
k

ri,k log πk +
∑
i

∑
k

ri,k log p(xi | θk).

I E step: compute the responsibilities ri,k for each i and k:

ri,k =
πkp(xi | θt−1

k )∑
k′ πk′p(xi | θt−1

k′ )
.



EM -algorithm

I Optimize Q with respect to π,µk,Σk.

I

πk =
1

N

∑
i

ri,k =
rk
N

where rk =
∑

i ri,k
I Derive M step for the µk and Σk

L(µk,Σk) = −1

2

∑
i

ri,k[log | Σk | +(xi − µk)Tσ−1
k (xi − µk)]

µk =

∑
i ri,kxi
rk

Σk =

∑
i ri,kxix

t
i

rk
− µkµTk


