MODEL CHECKING

Modeling Real-Time Systems
02.08.2018

Deepak Pal




WHAT IS A MODEL?

A model is a description of a system's behavior.

Behavior can be described in terms of input sequences, actions,
conditions, output and flow of data from input to output.

It should be practically understandable and can be reusable;
shareable must have precise description of the system under test.



MODEL CHECKING (MC) PROBLEM: INTUITION

Correct design means that the system under development
must satisfy design requirements. The requirements are
stated as correctness properties

Correctness properties state what behaviours/features are
correct and what are not in the system.

To apply rigorous verification methods formalization is
needed:

- system description
* correctness properties
System is described formally with its model

Properties are specified formally by assertions expressed
1n logic



MODEL CHECKING (FORMALLY)

Satisfaction relation (symbolically):
M |=¢?
“Does model M satisfy logic assertion ¢ ?”

Behavioural properties ¢ are stated often in temporal logic.

M 1s a state-transition system that models the behavior of
the implementation to be verified.

Procedural definition:

Model checking is a state space exploration method to determine
if the state space of model M satisfies the property ¢.







WHY MC?

MC 1s fully automatic

Good for bug-hunting because the “debugger” i.e. model
checker that does not require full execution of your
program

Traceability — the diagnostic trace (counter example)
generated by model checker helps in analyzing and
detecting the sources of design bugs.



WITNESSES AND COUNTEREXAMPLES

Witnesses and counterexamples produced by model checkers
provide a very useful source of diagnostic information.

Witnesses that show why a formula is satisfied and (more
often) counterexamples that show why it is not satisfied over
a model.

They are usually returned by model checkers in the form of a
computation path.

Uppaal tip: under the menu Options: Diagnostic trace select the
option Shortest to let the verifier generates a counterexample in the
simulator.



MODELLING

Where the model M comes from?
1. Formal modelling

It 1s a process of abstraction

It makes verification possible by retaining the part of the
system that is relevant to modeling

It should not discard too much so that the result lacks
certainty, or

discard too little so that the verification is not feasible

2. Modelling techniques:

“manual® composition by applying model patterns, abstractions,
domain knowledge,...

automatic modelling by applying machine learning methods: °
state and/or IO monitoring and automata learning from these logs

model extraction from code.



CHOOSING THE MODELLING FORMALISM?

We focus on state-transition systems.

They are
generally acceptable by model checkers;
represent finite set of states and transitions;
push-down automata/systems are possible;

also source programs can be used as models, e.g.,
Pathfinder for Java code;

abstract - symbolic encodings (logic formulae) specify
abstract properties instead of explicit state behavior.



MODELLING NOTIONS

State
We want to express what 1s true 1n a particular state

A state 1s a “snapshot” of the system variables’
valuation(s), e.g. * if a system 1s described by variables
X, v, z then valuation x=2.4, y= 3.14, z=10 1s one of its
possible states.

Transition represents relation between states.
It can be an abstraction of

C program statement, e.g. x++ transforming state
where x=12 to a new state where x=13;

an electronic circuit;

or just an arrow, the source and destination states of
which matter.



ATOMICITY OF STATE TRANSITIONS

Execution of a transition is atomic, 1.e. uninterruptable
once started.

Atomicity determines the abstraction level of the model
too big step may miss intermediate states that are important;
too small step may blow up the model unnecessarily.

Atomicity of transitions must also consider concurrency

possible inter-leavings of transitions and interactions of parallel
transitions systems must be explicit in the model.



SUMMARY

We touched the concept of MC at very high level:

MC 1s an automatic procedure that verifies temporal
and state properties

Requires input:
a state transition system
a temporal property

Model checking is an algorithmic framework tailored to
perform verification task; on a high level, model checking
can be viewed as an exhaustive search algorithm which
exploits various optimization strategies to find a
counterexample.

The main practical problem 1in model checking is the
combinatorial explosion of system states commonly known
as the state explosion problem.



