
MODEL CHECKING
Modeling Real-Time Systems

 02.08.2018

Deepak Pal

WHAT IS A MODEL?

 A model is a description of a system's behavior.

 Behavior can be described in terms of input sequences, actions,

conditions, output and flow of data from input to output.

 It should be practically understandable and can be reusable;

shareable must have precise description of the system under test.

MODEL CHECKING (MC) PROBLEM: INTUITION

 Correct design means that the system under development

must satisfy design requirements. The requirements are

stated as correctness properties

 Correctness properties state what behaviours/features are

correct and what are not in the system.

 To apply rigorous verification methods formalization is

needed:

 • system description

 • correctness properties

 System is described formally with its model

 Properties are specified formally by assertions expressed

in logic

MODEL CHECKING (FORMALLY)

 Satisfaction relation (symbolically):

 M |= ϕ ?

“Does model M satisfy logic assertion ϕ ?”

 Behavioural properties ϕ are stated often in temporal logic.

 M is a state-transition system that models the behavior of

the implementation to be verified.

 Procedural definition:

 Model checking is a state space exploration method to determine

if the state space of model M satisfies the property ϕ.

WHY MC?

 MC is fully automatic

 Good for bug-hunting because the “debugger” i.e. model

checker that does not require full execution of your

program

 Traceability – the diagnostic trace (counter example)

generated by model checker helps in analyzing and

detecting the sources of design bugs.

WITNESSES AND COUNTEREXAMPLES

 Witnesses and counterexamples produced by model checkers

provide a very useful source of diagnostic information.

 Witnesses that show why a formula is satisfied and (more

often) counterexamples that show why it is not satisfied over

a model.

 They are usually returned by model checkers in the form of a

computation path.

 Uppaal tip: under the menu Options: Diagnostic trace select the

option Shortest to let the verifier generates a counterexample in the

simulator.

MODELLING

 Where the model M comes from?

 1. Formal modelling

• It is a process of abstraction

• It makes verification possible by retaining the part of the

system that is relevant to modeling

• It should not discard too much so that the result lacks

certainty, or

• discard too little so that the verification is not feasible

2. Modelling techniques:

• “manual“ composition by applying model patterns, abstractions,

domain knowledge,…

• automatic modelling by applying machine learning methods: •

state and/or IO monitoring and automata learning from these logs

• model extraction from code.

CHOOSING THE MODELLING FORMALISM?

 We focus on state-transition systems.

 They are

 generally acceptable by model checkers;

 represent finite set of states and transitions;

 push-down automata/systems are possible;

 also source programs can be used as models, e.g.,

Pathfinder for Java code;

 abstract - symbolic encodings (logic formulae) specify

abstract properties instead of explicit state behavior.

MODELLING NOTIONS

 State

 We want to express what is true in a particular state

 A state is a “snapshot” of the system variables’

valuation(s), e.g. • if a system is described by variables

x, y, z then valuation x=2.4, y= 3.14, z=10 is one of its

possible states.

 Transition represents relation between states.

 It can be an abstraction of

C program statement, e.g. x++ transforming state

where x=12 to a new state where x=13;

 an electronic circuit;

 or just an arrow, the source and destination states of

which matter.

ATOMICITY OF STATE TRANSITIONS

 Execution of a transition is atomic, i.e. uninterruptable

once started.

 Atomicity determines the abstraction level of the model

 too big step may miss intermediate states that are important;

 too small step may blow up the model unnecessarily.

 Atomicity of transitions must also consider concurrency

 possible inter-leavings of transitions and interactions of parallel

transitions systems must be explicit in the model.

SUMMARY

 We touched the concept of MC at very high level:

 MC is an automatic procedure that verifies temporal

and state properties

 Requires input:

 a state transition system

 a temporal property

 Model checking is an algorithmic framework tailored to

perform verification task; on a high level, model checking

can be viewed as an exhaustive search algorithm which

exploits various optimization strategies to find a

counterexample.

 The main practical problem in model checking is the

combinatorial explosion of system states commonly known

as the state explosion problem.

