Exercise 1. Given the two sets

$$
\begin{aligned}
& A=\{x \in \mathbb{R}: 0<x \leqslant 3\}, \\
& B=\{x \in \mathbb{R}: 2 \leqslant x<4\}
\end{aligned}
$$

define the following sets: $A \cap B ; \quad A \cup B ; \quad A \backslash B ; \quad A^{\prime}$.

Solution.

$$
\begin{aligned}
A \cap B & =\{x \in \mathbb{R}: 2 \leqslant x \leqslant 3\} \\
A \cup B & =\{x \in \mathbb{R}: 0<x<4\} \\
A \backslash B & =\{x \in \mathbb{R}: 0<x<2\} \\
A^{\prime} & =\{x \in \mathbb{R}: x \leqslant 0 \vee x>3\}
\end{aligned}
$$

Exercise 2. Suppose that

$$
\begin{aligned}
& A=\{x \in \mathbb{N}: x \text { is even }\} \\
& B=\{x \in \mathbb{N}: x \text { is prime }\} \\
& C=\{x \in \mathbb{N}: x \text { is a multiple of } 5\} .
\end{aligned}
$$

Describe each of the following sets.
(a) $A \cap B$
(b) $B \cap C$
(c) $A \cup B$
(d) $A \cap(B \cup C)$

Solution.

1. (a) $A \cap B=\{x \in \mathbb{N}: x$ is even $\wedge x$ is prime $\}=\{2\}$.
2. (b) $B \cap C=\{x \in \mathbb{N}: x$ is prime $\wedge x$ is a multiple of 5$\}=\{5\}$.
3. (c) $A \cup B=\{x \in \mathbb{N}: x$ is even $\vee x$ is prime $\}$.
4. (d) $A \cap(B \cup C)=\{x \in \mathbb{N}: x$ is even $\wedge(x$ is prime $\vee x$ is a multiple of 5$)\}$.

Exercise 3. If $A=\{a, b, c\}, B=\{1,2,3\}, C=\{x\}$, and $D=\emptyset$, list all of the elements in each of the following sets.
(a) $A \times B$
(b) $B \times A$
(c) $A \times B \times C$
(d) $A \times D$

Solution.

(a) $A \times B=\{(a, 1),(a, 2),(a, 3),(b, 1),(b, 2),(b, 3),(c, 1),(c, 2),(c, 3)\}$.
(b) $B \times A=\{(1, a),(1, b),(1, c),(2, a),(2, b),(2, c),(3, a),(3, b),(3, c)\}$.
(c) $A \times B \times C=\{(a, 1, x),(a, 2, x),(a, 3, x),(b, 1, x),(b, 2, x),(b, 3, x),(c, 1, x),(c, 2, x),(c, 3, x)\}$.
(d) $A \times D=\{(a, b): \underbrace{a \in A \wedge b \in \emptyset}_{\text {FALSE }}\}=\emptyset$.

Exercise 4. Let A be a set. Show that $A \cap A=A$.
Solution.

$$
A \cap A=\{x: x \in A \wedge x \in A\}=\{x \in A\}=A
$$

Exercise 5. Let A be a set. Show that $A \cup \emptyset=A$.

Solution.

$$
A \cup \emptyset=\{x: x \in A \vee x \in \emptyset\}=\{x: x \in A\}=A .
$$

Exercise 6. Let A, B, C be sets. Show that $A \cup(B \cup C)=(A \cup B) \cup C$.
Solution.

$$
\begin{aligned}
A \cup(B \cup C) & =A \cup\{x: x \in B \vee x \in C\} \\
& =\{x: x \in A \vee x \in B \vee x \in C\} \\
& =\{x: x \in A \vee x \in B\} \cup C \\
& =(A \cup B) \cup C .
\end{aligned}
$$

Exercise 7. Let A, B be sets. Show that $A \cup B=B \cup A$.
Solution.

$$
A \cup B=\{x: x \in A \vee x \in B\}=B \cup A
$$

Exercise 8. Let A, B, C be sets. Show that $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.
Solution.

$$
\begin{aligned}
A \cup(B \cap C) & =A \cup\{x: x \in B \wedge x \in C\} \\
& =\{x \in A \vee(x \in B \wedge x \in C)\} \\
& =\{(x \in A \vee x \in B) \wedge(x \in A \vee x \in C)\} \\
& =(A \cup B) \cap(A \cup C) .
\end{aligned}
$$

Exercise 9. Let A, B be sets. Show that $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$.
Solution. We must show that $(A \cup B)^{\prime} \subseteq A^{\prime} \cap B^{\prime}$ and $(A \cup B)^{\prime} \supseteq A^{\prime} \cap B^{\prime}$.

$$
\begin{aligned}
& x \in(A \cup B)^{\prime} \Longrightarrow x \notin(A \cup B) \Longrightarrow x \notin A \wedge x \notin B \Longrightarrow x \in A^{\prime} \wedge x \in B^{\prime} \Longrightarrow x \in A^{\prime} \cap B^{\prime} \\
& x \in A^{\prime} \cap B^{\prime} \Longrightarrow x \in A^{\prime} \wedge x \in B^{\prime} \Longrightarrow x \notin A \wedge x \notin B \Longrightarrow x \notin A \cup B \Longrightarrow x \in(A \cup B)^{\prime}
\end{aligned}
$$

Therefore, $(A \cup B)^{\prime} \subseteq A^{\prime} \cap B^{\prime}$ and $(A \cup B)^{\prime} \supseteq A^{\prime} \cap B^{\prime}$. Hence, $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$.
Exercise 10. Let A, B, C be sets. Show that $A \cup B=(A \cap B) \cup(A \backslash B) \cup(B \backslash A)$.
Solution.

$$
\begin{aligned}
A \cup B & =(A \cap B) \cup(A \backslash B) \cup(B \backslash A) \\
& =(A \cap B) \cup\left(A \cap B^{\prime}\right) \cup\left(B \cap A^{\prime}\right) \\
& =\left(A \cap\left(B \cup B^{\prime}\right)\right) \cup\left(B \cap A^{\prime}\right) \\
& =A \cup\left(B \cap A^{\prime}\right)=(A \cup B) \cap\left(A \cup A^{\prime}\right) \\
& =(A \cup B)=A \cup B .
\end{aligned}
$$

